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Figure 3–4. Designer Knowledge of Digital Nudges, Before and After the 

Experiment 

 

IV.C. Effect of Treatments on Webpage Choices 

We next turn to our primary analysis: whether our treatments have a significant impact on 

a designer’s propensity to choose the version of a webpage that includes digital nudges.  

Figure 3-5 presents the results broken down by treatment condition and page task. 

Overall, both treatments reduce the number of designers who choose the homepage design 

with digital nudges. 78 percent of subjects in Control selected the homepage with nudges; 

this percentage declines by 16 percentage points to 62 percent in Treatment DN Info and 

by 20 percentage points to 58 percent in Treatment Consumer Info. Neither treatment 

significantly changes the number of designers who chose the product page design with 

digital nudges. Finally, only Treatment Consumer Info reduces the number of designers 

who chose the checkout page design with digital nudges from 82 percent to 58 percent, a 

24-percentage point decline.  
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Figure 3-5. Percent Choosing Webpage Design With Digital Nudges, By Treatment 

 
 

To investigate whether the effects of the treatments on each page choice are 

statistically significant, we ran two regressions for each page. Similar to the previous 

chapter, we estimate several versions of the following linear probability model (LPM) by 

Ordinary Least Squares (OLS): 

𝑃(𝑌𝑖 = 1) = 𝛼 + 𝛽1𝑇𝑖 + 𝛽2𝐷𝑖 + 𝜀𝑖 (1) 

where Yi is a dummy variable that equals 1 if subject i chooses the page (home, product, or 

checkout) that includes digital nudges and equals 0 if they choose the page with no nudges; 

Ti is a vector of dummy variables indicating which treatment group subject i was randomly 

assigned to; Di is a vector of designer subject characteristics, and εi is an error term; all 

estimated standard errors are robust to heteroskedasticity, which is well-known to be 
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present in models of this type (Wooldridge, 2010). Each model is estimated twice, first 

controlling only for the treatment group indicators, and again adding in the controls for 

subject characteristics.3 

The first controls only for treatment group indicators. The second adds controls for 

all designer characteristics. The results are presented in Table 3-4. Consistent with the raw 

results presented in Figure 3-5, both Treatment DN Info and Treatment Consumer Info saw 

a decrease in the percentage of designers who chose the homepage with digital nudges 

compared to the control group. These results are displayed in columns 1 and 2. Treatment 

DN Info produces a 16-percentage point decrease in home page choices with the digital 

nudges included compared to Control. Treatment Consumer Info results in a 20-percentage 

point decrease when designer characteristics are not controlled for and a 20-percentage 

point decrease when they are. Each estimate is statistically significant at the 5 percent level 

at a minimum. These results do not support H2 but support H3, that designers would be 

less apt to use digital nudges within their designs if they knew information regarding 

consumer preferences. 

The effects on product page choices are presented in columns 3 and 4. The point 

estimates suggest that Treatment DN Info causes a small increase in the percentage 

choosing the design with nudges compared to Control (4 percentage points) in both 

regressions, whereas in contrast, Treatment Consumer Info causes a small decrease of 2 to 

5 percentage points. However, none of these estimates are statistically significant. These 

results do not support H2 or H3. 

 
3 As in the consumer study in the previous chapter, estimating the models using logit or probit yields nearly 

identical estimates. These estimates are presented in tables under Appendix J. 
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This differs from the findings from the checkout page regressions; these results are 

presented in columns 5 and 6. Treatment DN Info causes a 3 to 5 percentage point increase 

compared to the control group depending on whether designer characteristics are controlled 

for. The effects are not statistically significant. However, Treatment Consumer Info results 

in a substantial decrease compared to the Control group. In the regression without controls, 

there is a 24-percentage point decrease; when these controls are added, the estimate is a 

23-percentage point decrease in digital nudge decision choices. These estimates are 

statistically significant at the one percent level. These results do not support H2 but support 

H3. 

Table 3-4. Effect of Treatments on Each Page Design Choice 

 Homepage Product Page Checkout Page 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.16*** -0.14** 0.04 0.05 0.03 0.05 

 (0.059) (0.060) (0.049) (0.049) (0.048) (0.047) 

       

Consumer Info -0.20*** -0.20*** -0.02 -0.02 -0.24*** -0.23*** 

 (0.059) (0.067) (0.053) (0.053) (0.057) (0.058) 

       

Constant 0.78*** 0.52** 0.80*** 0.83*** 0.82*** 0.71*** 

 (0.038) (0.170) (0.036) (0.136) (0.035) (0.170) 

       

Designer 

characteristics 

No Yes No Yes No Yes 

       

N 353 353 353 353 353 353 

R2 0.033 0.062 0.005 0.110 0.079 0.136 

Note: Means over standard deviations in parentheses. */**/*** indicate statistical 

difference from Control at the 10/5/1 percent levels, respectively. 

 

IV.D Effect of Treatments with Designer Characteristics 

We next examined whether the effect of the treatments vary with several different 

designer characteristics. First, we consider the role of the subjects at their companies. 

Based on the responses, the participants were either categorized as working within a firm 
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based on their role (e.g., executive, manager, director) or self-employed. We reran the 

regressions presented in Table 3-3 separately for each of these role categories; the results 

are presented in Table 3-5. Since the overall results show little difference in the estimates 

when designer characteristics are added to the regressions, we omitted these controls from 

this analysis. 

The results for the homepage decisions are presented in columns 1 and 2. Both 

treatment groups resulted in a decrease compared to the Control group. For Treatment DN 

Info, there is an 11-percentage point (pp.) decrease for those working within a firm and a 

7 pp. decrease for those who are self-employed. For Treatment Consumer Info, there is an 

18 pp. decrease for those working within a firm and a 19 pp. decrease for those who are 

self-employed. Only the Treatment Consumer Info effects are statistically significant. 

Overall, the effects of both treatments are very similar across the two types of designer 

roles, and interaction effect regressions (not shown) find that none of the differences in the 

treatment effects across roles are statistically significant. These results only partially 

support H2 and H3, that designers would be less apt to use digital nudges within their 

designs. 

The results for the product page decisions are presented in columns 3 and 4. Across 

both treatment groups there is a decrease in choosing the digital nudge designs for those 

within a firm and an increase for those self-employed. For Treatment DN Info, there is a 1 

pp. decrease for those within the firm and an 8 pp. increase for those self-employed, 

compared to the Control group. For Treatment Consumer Info there was a 10 pp. decrease 

for those within firm and a 5 pp. increase for those categorized as self-employed. However, 

all effects are statistically insignificant, and again, interaction effect regressions (not 
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shown) find that none of the differences in the treatment effects across roles are statistically 

significant. These results support H2 and H3. 

Finally, the effects on checkout page choices are presented in columns 5 and 6. The 

results are again almost identical across the two designer roles. For Treatment DN Info, 

there is a 2 pp. increase for roles within a firm and a 3 pp. decrease for those self-employed; 

neither estimate is statistically significant. For Treatment Consumer Info, there is a 26 pp. 

decrease for in firm roles versus a 32 pp. decrease for those self-employed. Both effects 

are significant at the one percent level, and once again, interaction effect regressions find 

that the differences in the treatment effects across roles are statistically insignificant. To 

test to see if the treatment effects are different by roles, a regression using the full sample 

and added interaction terms between the treatment indicators and role indicators to the 

specifications was run (see Appendix H) but had no statistically significant 

results.  Overall, the results of the robust regression support H2 and H3, that designers 

would be less apt to use digital nudges within their designs.
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Table 3-5. Effect of Treatments on Each Page Design Choice, By Role (In a Firm vs. Self-

Employed) 
 Homepage Product Page Checkout Page 

Role type: Firm Self-employed Firm Self-

employed 

Firm Self-

employed 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.11 -0.07 -0.01 0.08 0.02 -0.03 

 (0.090) (0.089) (0.070) (0.077) (0.072) (0.067) 

       

Consumer Info -0.18* -0.19** -0.10 0.05 -0.26*** -0.32*** 

 (0.093) (0.090) (0.079) (0.077) (0.088) (0.081) 

       

Constant 0.76*** 0.76*** 0.86*** 0.78*** 0.84*** 0.89*** 

 (0.062) (0.058) (0.055) (0.057) (0.053) (0.043) 

       

N 153 155 153 155 153 155 

R2 0.022 0.030 0.014 0.007 0.084 0.120 

       

Note: Means over standard deviations in parentheses. */**/*** indicate statistical difference 

from Control at the 10/5/1 percent levels, respectively. 
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We next examined whether treatment effects vary with the years of experience the 

subject has at their current job. Years of experience were divided into two groups: 

participants with less than three years and three years or more of experience. These 

estimates are presented in Table 3-6. Across all three pages (home, product, checkout), 

Treatment DN Info has no statistically significant effect on any page design choice for any 

experience group.  

In Treatment Consumer Info, however, results decrease the probability of selecting 

the design with digital nudges no matter the years of experience. The homepage saw a 25 

pp. decrease for those with less experience, whereas for those with more experience, there 

was a 15 pp. decrease compared to the Control group. Both were statistically significant at 

the one percent and 10 percent levels, respectively, but the difference between the two 

effects is insignificant. Treatment Consumer Info had no statistically significant effect on 

product page choice. Similar, to the homepage, Treatment Consumer Info results in a 23 

pp. decrease on the checkout page choice for those with less than three years of experience 

and a 24 pp. decrease for those with three years or more; both effects are statistically 

significant at the one percent level, and the difference between the effects is insignificant. 

To test to see if the treatment effects are different by experience, a regression using the 

full sample and added interaction terms between the treatment indicators and experience 

indicators to the specifications was run (see Appendix H) but the interactive indicators had 

no statistically significant results.  Overall, these results also support H2 and H3, that 

designers would be less apt to use digital nudges within their designs.  
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Table 3- 6. Effect of Treatments on Each Page Design Choice, By Experience at Current 

Job 

 Homepage Product Page Checkout Page 

Experience: 0 to 3 years > 3 years 0 to 3 years > 3 years 0 to 3 years > 3 years 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.10 -0.16* 0.06 0.01 0.04 0.01 

 (0.086) (0.084) (0.082) (0.063) (0.080) (0.063) 

       

Consumer Info -0.25*** -0.15* -0.00 -0.06 -0.23** -0.24*** 

 (0.091) (0.083) (0.087) (0.068) (0.093) (0.076) 

       

 0.80*** 0.76*** 0.76*** 0.85*** 0.78*** 0.85*** 

Constant (0.057) (0.054) (0.061) (0.045) (0.059) (0.045) 

       

N 149 183 149 183 149 183 

R2 0.048 0.024 0.005 0.008 0.069 0.078 

Note: Means over standard deviations in parentheses. */**/*** indicate statistical 

difference from Control at the 10/5/1 percent levels, respectively. 

 

IV.E Effect of Treatments with Income 

Next, we investigated whether treatment effects vary by income (Table 3-7). 

Income groups were divided until those who made under $80K, between $30K and $80K, 

and then over $80,000 a year based on distribution. There were mixed effects within both 

treatment groups. There were both larger effect sizes and more statistically significant 

within the Treatment Consumer Info than the other treatment group. For the Treatment DN 

Info, the only significant finding was with the homepage for those making between $30,000 

and $80,000. Those participants indicated a 24 pp. decrease (p<0.05) compared to the 

Control group. These results only partially support H2 and H3. 

For the Treatment Consumer Info, the largest effect sizes were within the homepage 

and checkout page choices. Across all three income brackets, there was statistical 

significance for the homepage results. Those who made less than $30,000 reported a 20 pp. 

decrease which was just 3 pp. higher than those making over $80K. However, participants 
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making between $30,000 and $80,000 indicated a 27 pp. decrease in choosing the digital 

nudge choice for the homepage compared to the Control. They had a similar response to 

the checkout page with a 30 pp. decrease. This was 5 pp. more than those making over 

$80K and 14 pp. more than those making less than $30,000 annually. Both income brackets 

of $30K or more had statistically significant findings. Finally, interaction variables were 

created between the treatment groups and income brackets (see appendix). However, none 

of the results were statistically significant. Overall, these results also support H2 and H3. 

To test to see if the treatment effects are different by income, a regression using the 

full sample and added interaction terms between the treatment indicators and income 

indicators to the specifications was run (see Appendix E).  Those within the Treatment CP 

Info making over $80,000 annually had a 21-percentage point decrease in choosing product 

pages with digital nudges relative to Control at the 10-percent confidence level. This result 

also supports H2 and H3. 
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Table 3-7. Effect of Treatments on Each Page Design Choice, By Income Level 

 Homepage Product Page Checkout Page 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Treatments:          

DN Info -0.08 -0.24** -0.12 0.14 0.13 -0.06 0.10 0.07 -0.04 

 (0.113) (0.105) (0.092) (0.103) (0.103) (0.074) (0.100) (0.088) (0.076) 

          

Consumer 
Info 

-0.20* -0.27** -0.16* 0.09 0.03 -0.12 -0.16 -0.30*** -0.25*** 

 (0.114) (0.116) (0.088) (0.105) (0.105) (0.074) (0.117) (0.113) (0.082) 

          

Constant 0.82**

* 

0.76**

* 

0.77**

* 

0.75**

* 

0.75**

* 

0.88**

* 

0.79*** 0.79*** 0.86*** 

 (0.073) (0.075) (0.056) (0.083) (0.083) (0.044) (0.078) (0.072) (0.047) 

          

N 87 114 152 87 114 152 87 114 152 

R2 0.034 0.054 0.023 0.022 0.019 0.017 0.066 0.126 0.069 

          

Note: Means over standard deviations in parentheses. */**/*** indicate statistical difference 

from Control at the 10/5/1 percent levels, respectively. 
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IV.E Effect of Treatments with Influence Over Design Decisions 

Lastly, we examined the treatment effects on each page choice by influence level 

over the implementation of design decisions that the subjects felt they have at work. These 

results are presented in Tables 3-7 through 3-9. Subjects were divided (roughly) into 

quartiles of the influence index, which ranged from 1 (not influential at all) to 10 (extremely 

influential). Quartile 1 placed their rating from 1 to 4, quartile 2 rated their influence from 

5 to 7, quartile 3 rated their influence at 8, and quartile 4 rated their influence at 9 or 10.  

Table 3-8 presents results on homepage design choice. The effect of Treatment DN 

Info is large and statistically significant for only those with the most influence over design 

decisions. Among the top quartile, this treatment results in a 38 pp.  decrease compared to 

the Control group. The estimated effect is also large and negative among those with an 

influence index of 8 (21 pp.), but the estimate is statistically insignificant, though this test 

is likely underpowered since the group includes only 64 designers. Treatment Consumer 

Info results in a consistent decrease in digital nudge page choice across all influence 

groups. All but the lowest quartile was statistically significant. These results support H2 

and H3, that designers would be less apt to use digital nudges within their designs.
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at  5.43 out of 10. Similarly, consumers rated these nudges at 5.4 out of 10 and are 28 

percentage points less likely to select the page containing these nudges after learning about 

them.  

 

Figure 3-6. Designer Manipulation Ratings of Digital Nudges Used on Each Webpage 

 

Designers rated the nudges used on the product page at just over 4 out of 10. 

Consumers gave a similar rating of 4.05 out of 10 and were 10 percentage points less likely 

to select the product page containing these nudges after learning about them. 

Finally, both designers and consumers are the least bothered by the digital nudges 

used on the checkout page. It may be that because these digital nudges seem more 

beneficial to the consumer since they would have already decided to buy at this point in 

the shopping process. Designers rated the manipulativeness of these digital nudges at 

around 3.6 out of 10; whereas consumers gave a similar rating of 3.67 out of 10. Consumers 
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were thus not surprisingly largely unaffected by learning about these nudges. Relative to 

Control, those that were given information about digital nudges were only 2.4 percentage 

points less likely to choose the page with the nudges. 

The specific digital nudges used on the homepage include framing effects (i.e., a 

bias where the way an item is presented will change the decision-making behavior) and 

confirmshaming, a dark pattern designed to get a user to take an action that they may not 

make otherwise. The two highest rated examples within the manipulation rating exercise 

included confirmshaming. This may be a result of the ethical discourse within the HCI 

practitioner community (Gotterbarn et al., 2017; Wolf, 2016) and more general awareness 

of dark patterns over the past ten years (Obi et al., 2022). As noted above, both designers 

and consumers were the most disturbed by these manipulations. Reassuringly, both 

treatments had the largest effects on the homepage choice. In the companion study, 

consumers were 28 percentage points less likely to choose the homepage with the nudges 

after learning about them, and the treatment effects on designer propensity to choose the 

nudge-filled homepage are similar in magnitude (a decrease of about 24 percentage points). 

The largest responses are by those designers who self-reported high influence over their 

design implementations (38 pp. decrease) or have more than three years of experience (16 

pp. decrease). Those who have more experience and high levels of influence may feel that 

they can implement the designs they warrant as what is best for the consumer. This supports 

Bozbag (2013) that humans not only impact design but can influence the operationalization 

of that design. However, the effects of the Treatment Consumer Info indicates that it is 

possible that designers agree with consumers on the use of digital nudges and which ones 

are considered manipulative. Though minimizing personal biases is asking designers to 
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envision intended use, that should be reasonable for a designer to anticipate (Bozbag, 

2013), particularly if working with others within an organizational environment. 

 The digital nudges used on the product pages were confirmation bias, hyperbolic 

discounting, and default. On average, the designers rated two of these digital nudges 

slightly higher than the consumers in the complement study. For example, designers rated 

hyperbolic discounting 0.34 higher and rated confirmation bias 0.42 higher than consumers 

did. However, the designers rated the confirmation bias highest at 4.24 out of 10, whereas 

the consumers rated the hyperbolic discounting highest at 4.52 out of 10. This may be due 

to the topic of biases within design as something UX designers discuss within practice 

(Gray et al., 2022) or that there is work being done by researchers to counter the 

confirmation bias nudge (Thornhill et al., 2019). Within the companion study, consumers 

in the digital nudge treatment were 16 percentage points less likely to choose the product 

page with the nudges after learning about them. This differed from the designers who 

hovered around 4-5 percentage points less to choose the product page with the nudges with 

both treatment groups. The most prominent responses are by those designers who self-

reported high influence over their design implementations (30 pp. decrease) and those 

making over $80,000 a year (12 pp. decrease). 

Finally, within the checkout page, the digital nudges used were different default 

and hyperbolic discounting forms. Though similar in the rating of these two digital nudges 

to the consumers who rated them, the designers rated the default nudge higher on the 

manipulation scale (3.69 out of 10) than the hyperbolic discounting on delivery (3.54 out 

of 10). Evidence indicates that consumers can act more positively to a default nudge when 

accompanied by a hyperbolic discounting nudge within the purchase stage (Schär, A., & 
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Stanoevska-Slabeva, 2019). In the consumer study, consumers were only three percentage 

points less likely to choose the checkout page with the nudges after learning about them. 

This differed significantly from the designers who reported being self-employed (32 pp. 

decrease), making more than $30K a year (30 pp. decrease), or self-reported high influence 

over their design implementations (21 pp. decrease).  

VI. Conclusion 

In this study, we found that designers are more inclined to avoid using digital 

nudges if they know that the consumer does not prefer them within a user experience. 

Second, digital nudge knowledge was higher before the study than after, indicating that 

designers may think they know more about the elements they use to design digital 

environments than they actually do. Furthermore, our findings indicate that those who 

perceive they have influence over design decisions are more likely to not use digital nudges 

within a user experience than they receive feedback from consumers. However, since firms 

pay designers and not consumers, the lack of effect on design decisions may be due to 

designers with more experience who are used to seeing such designs. Nevertheless, this 

study accordingly reveals the importance of the ‘voice of the customer’ when making 

decision decisions and that designers are willing to take the customers’ perspective into 

consideration when making such decisions. Thus, though designers may design and test 

digital nudges to achieve behavioral effects (Schneider et al., 2018), those designs and their 

effects may not be what the consumer prefers. Reassuringly, designers take these 

preferences into account, at least within some circumstances.  

These findings have several implications for practice. Practitioners may want to 

consider incorporating a voice of customer program for users to better understand the 
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technology, techniques, and tools being used to design digital environments. This would 

provide designers with feedback as to which digital nudges consumers are OK with and 

which they find manipulative. Additionally, organizations may want to consider providing 

transparency in how they make digital nudging decisions and post them on the 

organization’s website. By being forthright with transparency, organizations may spark a 

different conversation regarding accountability. Finally, policymakers may want to ensure 

that consumers have the choice user experience that they would prefer and provide the 

option to opt out, as that same choice is now mandatory for cookies on websites. This 

would allow for digital nudges to move more towards their origins by providing freedom 

of choice and agency. 

This study has several limitations. First, the subjects within this study may not 

generalize to real-life scenarios where designers need to make decision decisions within a 

firm. For example, a manager may feel pressure from the organization to meet or exceed 

quarterly goals and may make decisions based on those pressures. Secondly, only a few 

digital nudges and one dark pattern (i.e., confirmshaming) leveraging several biases 

(default, hyperbolic discounting, confirmation bias) were used within this experiment. The 

digital nudges and dark patterns were chosen to create a more naturalistic choice 

environment for participants. Additionally, the majority of the respondents were from the 

United States. As a result, organizational dynamics and decisions may be made differently 

within other cultures. Finally, this study employed a more natural design approach modeled 

off Amazon’s e-commerce experience. Though we controlled for both Amazon familiarity 

and frequency within the study, there may be spillover effects from participants’ 

perceptions of Amazon’s user experience. 
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 There are several avenues for future research. First, researchers may want to 

consider more naturalistic experiments such as simulating a work environment where 

designers need to work together to make such design decisions. Second, future research 

may examine how designers would design other choice environments, such as an 

augmented reality app or an experience within virtual reality. Finally, examining how 

designers decide to use biases within experiences when a monetary incentive or 

promotion is at stake may provide a deeper perspective as to what propels designers to 

utilize digital nudges. 
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CONCLUSION 

 

 

This dissertation has taken a transdisciplinary approach to the evolution of digital 

nudges and their effects on both consumer and designer decision-making. Its goal was to 

provide a more holistic view, both through a conceptual and empirical lens, regarding the 

potential effects digital nudges have on decisions within digital environments, specifically 

within e-commerce user experiences. While the findings and avenues for future research 

are outlined within each chapter, this final chapter offers a summary of all the main results 

from each chapter and their implications for research and practice. 

 

MAIN DISSERTATION RESULTS 

The second chapter, the consumer study, investigated how knowledge of digital 

nudges impacts consumer preferences to use them. First, in this study, we found that 

consumers are more likely to avoid digital nudges if they know that nudges are being used 

within a user experience and how they are being used. Second, consumers had very little 

knowledge about digital nudges across all three treatments before the study. This indicates 

that consumers may need more information or education on how digital experiences are 

designed and the elements used. Furthermore, our findings indicate that those who know 

about digital nudges and experience low to medium-high cognitive loads are more likely 

not to choose web pages that use digital nudges. This study accordingly supports the 

argument that digital nudges influence consumer decisions (Sunstein, 2015; Laukkanen et 

al., 2021) and reveals that digital nudges may need to be questioned, mainly if they cause 

harm to the consumer.  
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The third chapter, the designer study, complements the consumer study. First, it 

examined how much designers know about digital nudges and whether designers would be 

less apt to use digital nudges and dark patterns in their designs if they knew more about 

them and if they knew which ones consumers would prefer to avoid. In this study, we found 

that designers are more inclined to avoid using digital nudges if they know that the 

consumer does not prefer them within a page experience. Second, digital nudge knowledge 

was higher before the study than after, indicating that designers may think they know more 

about the elements they use to design environments than they actually do. Furthermore, 

our findings indicate that those who perceive they influence design decisions are more 

likely not to use digital nudges within a user experience than they receive feedback from 

consumers. This study accordingly reveals the importance of the ‘voice of the customer’ 

when making decisions and that designers are willing to consider the customers’ 

perspectives when making such decisions. Thus, though designers may design and test 

digital nudges to achieve behavioral effects (Schneider et al., 2018), those designs and their 

effects may not be what the consumer prefers. Reassuringly, designers consider these 

preferences, at least in some circumstances.     

 

CONTRIBUTION 

There are several contributions that this dissertation makes to the literature. First, 

within the narrative review, there has been an attempt to synthesize the gaps within the 

digital nudge literature across information systems, economics, human-computer factors, 

and psychology. In addition, the narrative review provides a taxonomy that will serve as a 

guide regarding the classification of varying types of digital nudges across the literature 

examined. Within the consumers study, there will be two contributions. Currently, there 
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needs to be more literature examining the knowledge that consumers have regarding digital 

nudges. This study will provide an initial understanding of that knowledge and how it 

affects consumer decision-making online. Additionally, there needs to be more evidence 

regarding consumers' knowledge of dark patterns within e-commerce experiences and 

whether it would impact their e-commerce decision-making process. This study provides 

an initial understanding of this area. Lastly, by providing empirical research on the effects 

of digital nudges on consumer behavior, this study will provide consumers with a broader 

perspective of how their behaviors may be altered within digital environments.  

Finally, there are three potential contributions to the digital nudges study for 

designers. Firstly, there needs to be more literature examining designers' knowledge 

regarding digital nudges. This study will provide a baseline of what knowledge UX 

designers have and a potential baseline for measuring such knowledge in future studies. 

Secondly, there is a lack of research regarding designers' knowledge of dark patterns within 

e-commerce experiences and whether designers will use them despite knowing how they 

may affect the consumer. This study provides a better understanding of their knowledge of 

such design tools and whether designers will choose to use them despite their effects. Third, 

there is a call within the Information Systems literature for more empirical research 

surrounding digital nudges within e-commerce user experiences (Hummel et al., 2018). 

This thesis and these studies look to answer that call. 

FUTURE RESEARCH 

Many avenues for future research come from this dissertation. From the narrative 

review, there is an overall need to provide empirical evidence regarding the effect of digital 

nudges on users. Though there have been several studies of e-commerce (Meske et al., 
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2020 Röthlisberger, 2020), mobile applications (Choe et al., 2013l Özdemir, 2019), and 

web interfaces (Eigenbrod & Janson, 2018; Hummel et al., 2018; Mirbabaie et al., 2020), 

there is room to explore digital nudges through social media sites, extended reality, and 

virtual reality (Innocenti, 2017). For example, researchers have wondered whether 

extensive exposure to a virtual environment could narrow the hot-cold empathy gap 

(Ersner-Hershfield et al., 2011; Loewenstein et al., 2003), where users underestimate the 

influences of their own instinctive drives. Researchers should also investigate the effects 

of digital nudges that leverage other sensory modalities, either in isolation (e.g., auditory) 

or in combination (e.g., audiovisual), to test the interactive effects within virtual and 

extended reality environments (Seo, 2020). Additionally, longitudinal studies on digital 

nudges' effects on individuals are needed. There is also a need to examine the cognitive 

effects of digital nudges and its subset of dark nudges. Furthermore, researchers may 

consider exploring how algorithmic nudges affect users differently than those designed and 

implemented by a human choice architect.  

There are several avenues for future research from the consumer study. First, 

researchers can create naturalistic experiments that simulate how to buy within e-

commerce experiences that employ other digital nudges and dark patterns than highlighted 

within this study. Next, researchers may examine how consumers respond to the same 

digital nudges within an immersive virtual reality e-commerce experience. Finally, 

researchers may want to examine how their perceptions of these experiences change when 

a monetary exchange is incorporated that utilizes digital nudges, as it may provide deeper 

insight into what tradeoffs consumers are willing to make. Additionally, there are future 

research opportunities from the designer study. First, researchers can create naturalistic 
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experiments that simulate designers' design decisions in environments like e-commerce. 

Second, future research may examine how designers would design other choice 

environments, such as an augmented reality app or an experience within virtual reality. 

Finally, examining how designers decide to use biases within experiences when a monetary 

incentive or promotion is at stake may provide a deeper perspective as to what propels 

designers to utilize digital nudges. 

IMPLICATION FOR RESEARCH AND PRACTICE 

All three chapters provide implications for both academia and practice. Regarding 

Chapter 1 (narrative review), there is a need to recognize that boundaries between an 

individual’s physical experiences and digital experiences will continue to blur 

(Zimmermann & Renaud, 2021). This is important because the cognitive load implications 

are still unknown to researchers. Additionally, researchers need to align where the concept 

of nudges remains true to its libertarian paternalism roots and mandate transparency. It is 

also essential for researchers to recognize that no matter the original intent evolves, 

technology, its environments, its artifacts, and its tools will continue to evolve. As the tools 

evolve, there will be a need to make users aware of the intentions of choice architects, 

consider accountability mechanisms for those choice architects who intentionally misguide 

or manipulate users, and empower users to fully exercise their own agency and choice 

when interacting with digital environments. Such grounding could provide practitioners 

with concrete methods and tools for implementing ethical digital nudges and propel 

potential discussions regarding the governance of such tools, as called for with other 

technologies (McHugh & Perrault, 2022). Additionally, this may assist policymakers as 

they navigate the potential regulation of specific digital nudges. For researchers, this 



 
 

132 
 

narrative review and taxonomy open new pathways for behavioral science research and 

theory. 

For Chapter 2, the consumer study, practitioners may want to consider providing 

two versions of user experiences to maintain the consumers’ agency and autonomy. 

Second, firms may want to provide a level of transparency about their design process and 

provide both education and warnings to consumers. Additionally, policymakers may want 

to weigh in on the ethics of how firms use digital nudges and consider a course of action 

to regulate their use of them. Finally, for Chapter 3 (designer study), practitioners may 

want to consider incorporating a voice of customer program for users to understand better 

the technology, techniques, and tools used to design digital environments. This would give 

designers feedback on which digital nudges consumers are OK with and which they find 

manipulative. Additionally, organizations may want to consider providing transparency in 

making digital nudging decisions and posting them on the organization’s website. By being 

forthright with transparency, organizations may spark a different conversation regarding 

accountability. Finally, policymakers may want to ensure that consumers have the choice 

of user experience they would prefer and provide the option to opt-out, as that same choice 

is now mandatory for cookies on websites. This would allow digital nudges to move toward 

their origins by providing freedom of choice and agency. 
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APPENDICES 

A. Paper 2 Consumer Study: Interaction Effects Between Treatment and Income 

Bracket 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

Digital Nudge Group -0.18 -0.06 0.1 

  (0.135) (0.127) (0.107) 

Privacy Group 0.04 -0.08 -0.12 

  (0.135) (0.129) (0.120) 

Income $30K-80K 0.17 0.02 0.01 

  (0.117) (0.114) (0.099) 

Income $80K+ 0.05 -0.03 9.57 

  (0.128) (0.120) (0.106) 

DN: $30K-80K -0.23 -0.08 -0.11 

  (0.165) (0.159) (0.138) 

PG: $30K-80K -0.25 0.05 0.57 

  (0.167) (0.160) (0.150) 

DN:80K+ 0.04 0.01 0.00 

  (0.180) (0.171) (0.143) 

PG:80K+ -0.11 0.22 0.27 

  (0.176) (0.163) (0.142) 

Constant 0.6*** 0.72*** 0.80***  

  (0.099) (0.091) (0.081) 

      

Observations 353 353 353 

R-squared 0.06 0.02 0.03 
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B. Paper 2 Consumer Study: Interaction Effects Between Treatment and Gender 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

Digital Nudge 

Group -0.24*** -0.08 -0.01 

  (0.088) (0.087) (0.072) 

Privacy Group -0.12 0.03 -0.01 

  (0.089) (0.083) (0.072) 

Female 0.09 0.07 -0.01 

  (0.089) (0.087) (0.077) 

DN: Female -0.04 -0.01 -0.03 

  (0.130) (0.127) (0.111) 

PG: Female 0.06 -0.03 0.02 

  (0.128) (0.120) (0.109) 

Constant 0.649*** 0.684*** 0.807***  

  (0.063) (0.074) (0.052) 

      

Observations 353 353 353 

R-squared 0.05 0.02 0.088 
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C. Paper 2 Consumer Study: Effect of Treatment on Each Page, Cognitive Load TLX Post-Experiment 

  (1) (2) (3) (5) (6) (7) (9) (10) (11) 

VARIABLES Home Home Home Product Product  Product  Checkout Checkout Checkout 

                    

Digital Nudge 

Group -0.46*** -0.19** -0.05 -0.11 -0.10 -0.30 0.01 -0.01 -0.10 

  (0.105) (0.083) (0.303) (0.095) (0.082) (0.332) (0.083) (0.069) (0.359) 

Privacy Group -0.35*** -0.05 0.12 -0.13 -0.12 -0.22 -0.06 0.02 0.15 

  (0.109) (0.084) (0.211) (0.100) (0.07) (0.246) (0.094) (0.069) (0.272) 

Constant 0.87*** 0.61*** 0.80*** 0.87*** 0.64*** 0.80*** 0.87*** 0.79*** 0.60*** 

  (0.061) (0.059) (0.193) (0.061) (0.057) (0.193) (0.061) (0.049) (0.236) 

           

Observations 96 211 21 96 211 21 96 211 21 

R-squared 0.16 0.026 0.041 0.019 0.032 0.048 0.01 0.001 0.05 

Cognitive 

Load (TLX) 

Very 

Low 

Medium 

Low 

Medium 

High 

Very 

Low 

Medium 

Low 

Medium 

High 

Very 

Low 

Medium 

Low 

Medium 

High 
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D. Paper 2 Consumer Study: Effect of Treatment on Each Page, Cognitive Load Paas Post-Experiment 

  (1) (2) (3) (5) (6) (7) (8) (9) (10) 

VARIABLES Home Home Home Product Product Product Checkout Checkout Checkout 

          

DN Group -0.16 -0.33*** -0.29*** -0.07 -0.08 -0.10 0.03 0.11 -0.11 

 (0.164) (0.116) (0.089) (0.129) (0.116) (0.090) (0.128) (0.102) (0.075) 

Privacy 

Group 0.04 -0.22* -0.09 -0.03 -0.06 0.09 0.11 0.05 -0.05 

 (0.156) (0.117) (0.89) (0.117) (0.116) (0.088) (0.112) (0.111) (0.073) 

Constant 0.55*** 0.77*** 0.70*** 0.85*** 0.73*** 0.67*** 0.80*** 0.73*** 0.84*** 

 (0.114) (0.078) (0.061) (0.081) (0.082) (0.062) (0.091) (0.082) (0.048) 

          

Observations 60 97 174 60 97 174 60 97 174 

R-squared 0.029 0.073 0.059 0.006 0.006 0.026 0.017 0.01 0.01 

PAAS Low Neutral High Low Neutral High Low Neutral High 
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E.  Paper 3 Designer Study: Interaction Effects Between Treatment and Income 

Bracket 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

Digital Nudge Group -0.08 0.14 0.1 

  (0.112) (0.103) (0.099) 

Consumer Preferences -0.20 0.09 -0.16 

  (0.113) (0.105) (0.116) 

Income $30K-80K -0.06 -0.02 0.00 

  (0.105) (0.114) (0.106) 

Income $80K+ -0.05 0.12 0.07 

  (0.092) (0.094) (0.091) 

DN: $30K-80K -0.16 -0.01 -0.04 

  (0.154) (0.139) (0.133) 

CP: $30K-80K -0.08 -0.06 -0.14 

  (0.162) (0.151) (0.163) 

DN:80K+ -0.04 -0.20 -0.15 

  (0.146) (0.127) (0.125) 

CP:80K+ 0.03 -0.21* -0.09 

  (0.144) (0.129) (0.143) 

Constant 0.821*** 0.75*** 0.78***  

  (0.073) (0.082) (0.079) 

      

Observations 353 353 353 

R-squared 0.05 0.02 0.088 
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F. Paper 3 Designer Study: Interaction Effects Between Treatment and Gender 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

Digital Nudge 

Group -0.132** 0.084 0.1 

  (0.066) (0.058) (0.057) 

Consumer 

Preferences -0.18*** 0.04 -0.19*** 

  (0.068) (0.061) (0.067) 

Female 0.02 0.19*** 0.173*** 

  (0.094) (0.060) (0.059) 

DN: Female -0.120 -0.196** -0.18* 

  (0.145) (0.100) (0.100) 

CP: Female -0.01 -0.28** -0.22* 

  (0.143) (0.113) (0.123) 

Constant 0.77*** 0.76*** 0.78***  

  (0.043) (0.044) (0.042) 

      

Observations 353 353 353 

R-squared 0.04 0.02 0.088 
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G. Additional Interaction Effects within the Consumer Study (Paper 2) 

Interaction Effects Between Treatments and Cognitive Reflection Pre-Experiment 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

DN Group  -0.04 -0.08  -0.04 

  (0.057) (0.065) (0.057) 

Priv Group 0.04 0.12  0.04 

  (0.108) (0.109) (0.108) 

DNxPreCorrect -- -- -- 

  -- -- -- 

DNxPreIncorrect 0.02***  -0.08 0.23*** 

  (0.042) (0.158) (0.042) 

PrivxPreCorrect  -0.04  -0.11  -0.04 

  (0.108) (0.110) (0.108) 

PrivxPreIncorrect -- -- -- 

  -- -- -- 

Constant 0.80*** 0.71*** 0.80*** 

  (0.038) (0.043) (0.038) 

      

Observations 331 331 331 

R-squared 0.01 0.01 0.01 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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Interaction Effects Between Treatments and Cognitive Responses Post-Experiment 

  (1) (2) (3) 

VARIABLES Home Product  Checkout 

        

DN Group  -0.26*** -015**  -0.05 

  (0.078) (0.078) (0.069) 

Priv Group -0.08 0.03 - 0.01 

  (0.080) (0.073) (0.067) 

DNxPostCogLow -0.30 0.21* 0.08 

  (0.133) (0.118) (0.105) 

PrivxPostCogLow -0.01 0.06 0.12 

  (0.125) (0.101) (0.083) 

DNxPostCogMedLow 0.03 0.07 0.12 

  (0.106) (0.104) (0.079) 

PrivxPostCogMedLow -0.06 -0.08 -0.02 

  (0.110) (0.101) (0.093) 

DNxPostCogMedHigh -- -- -- 

  -- -- -- 

PrivxPostCogMedHigh -- -- -- 

  -- -- -- 

DNxPostCogHigh  -0.43***  0.40***  -0.81*** 

  (0.055) (0.099) (0.061) 

PrivxPostCogHiigh 0.39*** 0.25***  0.21*** 

  (0.066) (0.058) (0.055) 

Constant 0.69*** 0.71*** 0.80 

  (0.045) (0.044) (0.038) 

      

Observations 331 331 331 

R-squared 0.05 0.03 0.03 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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H. Additional Interaction Effects within the Designer Study (Paper 3) 

Interaction Effects Between Treatments and Designers’ Roles 

 (1) (2) (3) 

VARIABLES Home Product Checkout 

    

DN Group -0.31*** -0.03 -0.05 

 (0.106) (0.091) (0.090) 

CP Group -0.07 0.09 - 0.01 

 (0.096) (0.096) (0.095) 

DNxFirm 0.17 0.11 0.01 

 (0.112) (0.096) (0.096) 

CPxFirm -0.20* 0.05 -0.20* 

 (0.120) (0.112) (0.120) 

DNxSolo 0.22 0.08 0.08 

 (0.119) (0.098) (0.098) 

CPxSolo -0.13 0.12 -0.13 

 (0.112) (0.102) (0.112) 

Constant 0.77*** 0.80*** 0.82*** 

 (0.038) (0.037) (0.035) 

    

Observations 353 353 353 

R-squared 0.05 0.01 0.09 

    

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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Interaction Effects Between Treatments and Designers’ Years of Experience 

 (1) (2) (3) 

VARIABLES Home Product Checkout 

    
DN Group -0.20** 0.12** 0.10* 

 (0.087) (0.056) (0.055) 

CP Group -0.17** 0.09 - 0.22 

 (0.098) (0.082) (0.097) 

DN: Less than 3 years 0.13 0.11 - 0.13 

 (0.111) (0.081) (0.081) 

CP: Less than 3 years -0.06 0.00 -0.06 

 (0.119) (0.096) (0.119) 

DN: More than 3 

years 0.01 -0.10 -0.10 

 (0.108) (0.072) (0.072) 

CP: More than 3 years -0.00 -0.05 -0.00 

 (0.118) (0.097) (0.115) 

Constant 0.77*** 0.80*** 0.82*** 

 (0.038) (0.037) (0.035) 

    
Observations 353 353 353 

R-squared 0.03 0.01 0.08 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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Interaction Effects Between Treatments and Designers’ Influence over Implementing 

Designs 

 (1) (2) (3) 

VARIABLES Home Product Checkout 

    
DN Group -0.22** -0.02 -0.04 

 (0.104) (0.089) (0.088) 

CP Group -0.15 0.07 - 0.19** 

 (0.095) (0.069) (0.093) 

DN:Med Low 

Influence 0.21* 0.11 0.11 

 (0.118) (0.094) (0.094) 

DN:Med High 
Influence 0.09 0.17** 0.17** 

 (0.139) (0.091) (0.091) 

DN:High Influence -0.10 -0.01 -0.01 

 (0.134) (0.114) (0.114) 

CP:Med Low 

Influence -0.08 -0.12 -0.08 

 (0.113) (0.086) (0.113) 

CP:Med High 

Influence 0.00 -0.19 0.00 

 (0.141) (0.123) (0.141) 

CP: High Influence -0.09 -0.08 -0.09 

 (0.144) (0.111) (0.144) 

Constant 0.77*** 0.80*** 0.82*** 

 (0.038) (0.037) (0.035) 

    
Observations 353 353 353 

R-squared 0.05 0.02 0.09 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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I. Logit Models for the Consumer Study 
 

 

Effect of Treatments on Each Page Design Choice 
 Homepage Product Page Checkout Page 

Shopping characteristics No Yes No Yes No Yes 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.27*** -0.27*** -0.09 -0.10 -0.01 -0.01 

 (0.069)  (0.071) (0.061) (0.062) (0.054) (0.055) 

Privacy Info -0.10 -0.09 0.02 0.02 -0.00 0.00 

 (0.069) (0.070) (0.064) (0.065) (0.054) (0.055) 

Constant 0.19***  0.13*** 0.19*** -0.24 0.22*** -0.43 

 (0.049) (0.265) (0.040) (0.227) (0.032) (0.203) 

       

N 331 331 331 331 331 331 

R2 0.037 0.046 0.009 0.027 0 0.016 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses.  
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Effect of Treatments on Each Page Design Choice, By Income Level 

 Homepage Product Page Checkout Page 

Income Level: 0K-

030K 

30K-

80K 

> 80K 0K-

030K 

30K-

80K 

> 80K 0K-30K 30K-80K > 80K 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Treatments:          

DN Info -0.18 0.43*** -0.14 -0.06 -0.13 -0.05 0.03 -0.08 0.01 

 (0.138) (0.112) (0.119) (0.131) (0.095) (0.099) (0.123) (0.089) (0.063) 

          

Privacy Info 0.04 -0.23** -0.07 -0.08 -0.02 0.15 -0.11 -0.06 0.16** 

 (0.141) (0.113) (0.116) (0.131) (0.102) (0.107) (0.112) (0.092) (0.075) 

          

Constant 0.10 0.29*** 0.15*** 0.20*** 0.22*** 0.15** 0.24*** 0.26*** 0.14*** 

 (0.100) (0.062) (0.083) (0.090) (0.062) (0.065) (0.073) (0.054) (0.044) 

          

N 82 138 111 82 138 111 82 138 111 

R2 0.039 0.089 0.098 0.004 0.014 0.032 0.021 0.006 0.055 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses. 
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Effect of Treatments on Each Page Design Choice, By Gender 

 Homepage Product Page Checkout Page 

Gender: Male Female Male Female Male Female 

 (1) (2) (4) (5) (7) (8) 

Treatments:       

DN Info -0.26** -0.29** -0.07 -0.09 -0.00 -0.03 

 (0.096) (0.101) (0.086) (0.088) (0.072) (0.081) 

       

Privacy Info -0.11 -0.06 0.05 0.00 0.03 0.00 

 (0.096) (0.104) (0.059) (0.094) (0.075) (0.084) 

       

Constant 0.15** 0.24*** 0.17*** 0.22*** 0.21*** 0.22*** 

 (0.070) (0.068) (0.059) (0.055) (0.044) (0.047) 

       

N 175 144 175 144 175 144 

R2 0.031 0.051 0.010 0.010 0.002 0.001 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from 

Control at the 10/5/1 percent levels, respectively in parentheses. 
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Effect of treatment on each page choice, by Cognitive Reflection Pre-Experiment 

       

  Home Home Product Product Checkout Checkout 

CRT Correct: Yes No Yes No Yes No 

  (1) (2) (3) (4) (5) (6) 

Treatments:       

DN Info -0.31*** 0.04 -0.08 -0.13 -0.03 - 

 (0.073) (0.221) (0.064) (0.186) (0.057) - 

       

Privacy Info -0.10 -0.11 0.00 0.17 0.00 0.05 

 (0.074) (0.215) (0.067) (0.205) (0.059) (0.146) 

       

Constant 0.21*** 3.44 0.20*** 0.16 0.22*** 0.24*** 

 (0.052) (0.164) (0.043) (0.127) (0.039) (0.088) 

       

N 297 34 297 34 297 23 

R2 0.049 0.01 0.009 0.064 0.001 0.008 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference 

from Control at the 10/5/1 percent levels, respectively in parentheses. 
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Effect of treatment on each page choice, Cognitive Load Combined Post Experiment 

  Home Home Home Product Product  Product  Checkout Checkout Checkout 

 

Cognitive 

Load: Low 

Medium 

Low 

Medium 

High Low 

Medium 

Low 

Medium 

High Low 

Medium 

Low 

Medium 

High 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Treatments:          

DN Info -0.31*** -0.23*** -0.30** -0.08 -0.07 -0.11 0.06 0.01 0.10 

 (0.1115) (0.079) (0.120) (0.090) (0.071) (0.111) (0.085) (0.063) (0.099) 

Privacy Info -0.20* -0.07 -0.16 -0.07 0.05 -0.07 0.00 0.00 0.04 

 (0.116) (0.079) (0.175) (0.092) (0.075) (0.109) (0.081) (0.062) (0.092) 

Constant 0.23** 0.13** 0.28*** 0.27*** 0.16*** 0.22*** 0.20*** 0.21*** 0.16*** 

 (0.084) (0.056) (0.086) (0.055) (0.047) (0.075) (0.048) (0.037) (0.059) 

          

N 124 251 116 124 251 116 124 251 116 

R-squared 0.048 0.027 0.045 0.008 0.011 0.007 0.005 0.000 0.008 
 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses
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J. Logit Models for the Designer Study 
 

 

Effect of Treatments on Each Page Design Choice 
 

 Homepage  Product Page  Checkout Page  

 (1) (2)  (3) (4)  (5) (6)  

Treatment:          

DN Info -0.17*** -0.15**  0.04 0.04  0.03 0.06  

 (0.064) (0.065)  (0.052) (0.050)  (0.063) (0.065)  

          

Consumer Info -0.21*** -0.20***  -0.02 -0.02  -0.21*** -0.21  

 (0.064) (0.067)  (0.049) (0.047)  (0.054) (0.056)  

          

Constant 0.78*** 0.53**  0.21*** 0.24***  0.27*** 0.20***  

 (0.043) (0.170)  (0.029) (0.132)  (0.035) (0.151)  

          

Designer 

characteristics 

No Yes  No Yes  No Yes  

          

N 353 353  353 353  353 353  

R2 0.029 0.049  0.054 0.064  0.067 0.119  

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses
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Effect of Treatments on Each Page Design Choice, By Role (In a Firm vs. Self-Employed) 
 

 Homepage Product Page Checkout Page 

Role type: Firm Self-employed Firm Self-employed Firm Self-employed 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.11 -0.07 -0.00 0.07 0.01 -0.05 

 (0.097) (0.097) (0.080) (0.076) (0.094) (0.096) 

       

Consumer Info -0.17* -0.19** -0.09 0.04 -0.22*** -0.29*** 

 (0.093) (0.092) (0.074) (0.071) (0.082) (0.079) 

       

Constant 0.25*** 0.25*** 0.25*** 0.18*** 0.28*** 0.33*** 

 (0.066) (0.061) (0.046) (0.040) (0.054) (0.051) 

       

N 153 155 153 155 153 155 

R2 0.017 0.023 0.014 0.007 0.072 0.106 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses
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Effect of Treatments on Each Page Design Choice, By Experience at Current Job 
 

 Homepage Product Page Checkout Page 

Experience: 0 to 3 years > 3 years 0 to 3 years > 3 years 0 to 3 years > 3 years 

 (1) (2) (3) (4) (5) (6) 

Treatment:       

DN Info -0.11 -0.17* 0.06 0.01 0.04 0.01 

 (0.099) (0.088) (0.084) (0.071) (0.098) (0.085) 

       

Consumer Info -0.25*** -0.15* -0.00 -0.06 -0.20** -0.21*** 

 (0.095) (0.088) (0.080) (0.064) (0.087) (0.070) 

       

 0.29*** 0.25*** 0.19*** 0.24*** 0.24*** 0.28*** 

Constant (0.064) (0.059) (0.048) (0.039) (0.056) (0.046) 

       

N 149 183 149 183 149 183 

R2 0.038 0.019 0.004 0.008 0.056 0.078 

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, 

respectively in parentheses.
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Effect of Treatments on Each Page Design Choice, By Income Level 

 Homepage Product Page Checkout Page 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Treatments:          

DN Info -0.09 -0.25** -0.12 0.13 0.12 -0.06 0.13 0.08 -0.05 

 (0.129) (0.120) (0.097) (0.101) (0.090) (0.082) (0.130) (0.109) (0.096) 

          

Consumer Info -0.20* -0.29** -0.16* 0.08 0.02 -0.12 -0.13 -0.25*** -0.24*** 

 (0.118) (0.129) (0.091) (0.090) (0.092) (0.073) (0.101) (0.103) (0.080) 

          

Constant 0.29*** 0.27*** 0.25*** 0.15*** 015*** 0.28*** 0.22*** 0.24*** 0.31*** 

 (0.079) (0.093) (0.059) (0.053) (0.056) (0.043) (0.068) (0.069) (0.050) 

          

N 87 114 152 87 114 152 87 114 152 

R2 0.028 0.041 0.019 0.024 0.019 0.018 0.061 0.102 0.061 

          

Note: Coefficients listed with standard errors. */**/*** indicate statistical difference from Control at the 10/5/1 percent levels, respectively 

in parentheses.
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