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Abstract

Optimizing Pension Outcomes Using Target Volatility Investment Concept

Zefeng Bai

Chair of the Supervisory Committee:

Professor Victoria Steblovskaya

Department of Mathematical Sciences

The target volatility strategy is a very popular investment concept in financial marketplace.

For my dissertation, I focus on studying the target volatility investment concept in applica-

tion to pension accumulation as well as decumulation stages. Additionally, I extend a basic

target volatility strategy by introducing trading boundaries to its asset allocation mecha-

nism. My dissertation study follows a three-paper format.

In paper one, we propose a new pension strategy that aims at improving the protection

of a long-term pension plan in volatile market conditions. Over a hypothetical twenty-

year pension scheme, we show that our newly proposed strategy, which attaches a target

volatility mechanism to a lifecycle strategy, could provide more effective capital protection

and risk control for pension investment vehicles. In addition, we show that our proposed

strategy has an improved portfolio diversification effect and market timing skills compared

to a benchmark pension strategy. Our results are robust with a consideration of transaction

costs.

In paper two, we enhance the retirement coverage of several conventional retirement plans

by using a target volatility strategy with interest rate dependent target volatility levels. Us-

ing the Monte Carlo simulation approach, we find that the retirement portfolio enhanced by

the target volatility mechanism shows a significantly higher level of confidence to achieve
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required income levels compared to the conventional retirement portfolio. Therefore, the

target volatility investment strategy could be a suitable alternative for investors who look

for a higher level of stability in retirement coverage.

In paper three, we attempt to reduce the transaction costs of a target volatility portfolio by

adding market risk calibrated rebalancing boundaries to its asset allocation mechanism. A

constraint optimization problem based on investor-relevant optimization criteria is formu-

lated. A numerical optimization algorithm to find an optimal rebalancing boundary level is

presented. Illustrative numerical results within the Black-Scholes environment, as well as

using real market data are reported. The comparative analysis on different market scenar-

ios suggests that the target volatility portfolio with rebalancing boundaries can effectively

reduce portfolio transaction costs and improve portfolio returns. Our findings have impor-

tant applications given the popularity of the target volatility investment strategies among

financial practitioners.
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Introduction

The target volatility investment concept is a dynamic asset management approach, which

aims at controlling portfolio risk in the volatile market conditions. Due to the 2008 financial

crisis and the recent market turbulence triggered by the COVID-19 pandemic, we observe

an increasing popularity of the target volatility concept adopted in various pension plans

and long-term investment funds. Thus, for my dissertation, I focused on studying the target

volatility investment concept in application to pension accumulation as well as decumula-

tion stages. Additionally, I extended a basic target volatility strategy by introducing trading

boundaries to the volatility target asset allocation mechanism. This will lead to reducing

transaction costs encountered in the process of rebalancing a target volatility portfolio. The

goal of my dissertation is as follows:

• Improving the protection of a long-term pension plan, such as the lifecycle pension

strategy, using the target volatility investment concept in pension accumulation stage.

• Enhancing retirement coverage of conventional retirement portfolios using the target

volatility investment concept in pension decumulation stage.

• Reducing the deleterious effect of transaction costs on portfolio returns by adding the

rebalancing boundaries to the volatility target asset allocation mechanism.

The three objectives mentioned above are addressed in Chapter 2, Chapter 3, and Chapter

4 of this dissertation.

For the first objective, we propose a new pension strategy which attaches the target volatility

investment concept to an existing lifecycle pension strategy. After computing different nu-

merical measurements for portfolio performance (i.e., risk-return ratio, annualized volatil-

1



ity, value-at-risk, conditional value-at-risk, and downside deviation), we use the Jensen’s

alpha regression and Henriksson and Merton measure to examine the diversification effect

and market timing skill of pension portfolio. Our results suggest that the lifecycle strategy

attached with a target volatility mechanism can provide a more effective asset protection in

volatile market conditions.

For the second objective, we use the target volatility strategy to enhance the retirement

coverage of several conventional retirement portfolios in pension decumulation stage. To

do so, we first consider a dynamic target volatility strategy with the target volatility level

dependent on market interest rates and then use the strategy as an extra layer of portfolio

protection. Using the Monte Carlo simulation approach, we evaluate the performance of

the dynamic target volatility strategy under different interest rate environments. Our sim-

ulation results show that the dynamic target volatility mechanism can further improve the

sustainability of a conventional retirement portfolio in pension decumulation stage. Thus,

we conclude that the target volatility investment strategy could be a suitable alternative for

investors who look for a higher level of stability in retirement coverage after they retired.

For the third objective, we attempt to reduce the transaction costs of a target volatility

portfolio by adding market risk calibrated rebalancing boundaries to its asset allocation

mechanism. We formulate a constraint optimization problem based on investor-relevant

optimization criteria and carry out a numerical optimization algorithm to find an optimal

rebalancing boundary level. Illustrative numerical results within the Black-Scholes envi-

ronment, as well as using real market data are reported. The comparative analysis on dif-

ferent market scenarios suggests that the target volatility portfolio with rebalancing bound-

aries can effectively reduce portfolio transaction costs and improve portfolio returns. Our

findings have important applications given the popularity of the target volatility investment

strategies among financial practitioners.

This dissertation study contributes to the literature in the field of pension management.

2



First, the dissertation study extends the existing literature about adopting the target volatil-

ity strategy in pension management domain. It shows that better pension outcomes can

be achieved by combining the target volatility investment concept with an existing pen-

sion management strategy such as the lifecycle pension strategy. It also shows that the risk

control mechanism embedded in the target volatility strategy can provide an effective asset

protection when a pension portfolio encounters turbulent market events.

Second, given the limited discussion on implementing the target volatility strategy in pen-

sion decumulation stage, we propose using the target volatility strategy as a continuous

measure to enhance the retirement coverage of retirement portfolios after people retired.

We show that the target volatility investment concept can not only improve various pen-

sion outcomes in the pension accumulation stage but also serve as a useful ”patch” to the

conventional retirement portfolios and allow them to provide a more sustainable retirement

coverage in pension decumulation stage. This is reflected in an enhanced portfolio survival

rate and length of retirement coverage.

Third, the proposed dissertation study contributes to the literature studying transaction costs

in asset management and long-term investment strategies. In asset management, the pres-

ence of transaction cost has been a major factor affecting portfolio returns. Mitigating the

deleterious effect of transaction cost could be an effective approach to improve the perfor-

mance of an asset management strategy. Thus, we believe our findings will be of interest

to practitioners in portfolio management field.

3



Optimizing Pension Outcomes Using

Target-Driven Investment Strategies: Evidence

From Three Asian Countries With The Highest

Old-Age Dependency Ratio1

2.1 Introduction

How to optimize pension outcomes for pension plans in volatile markets? This is a ques-

tion that has been debated, internationally, by both scholars and practitioners. Over the

past several decades, various investment strategies have garnered significant attention in

pension discussions. For example, different time-series momentum strategies (Baltas and

Kosowski, 2013), risk parity approaches (Kazemi, 2012), and target-date pension invest-

ment strategies have become important in financial investment practice due to their suitable

asset allocation concepts in response to rapidly changing market conditions (Forsyth and

Vetzal, 2019). Under most target-date pension concepts, investors benefit from the embed-

ded asset allocation process, which reduces risky assets when the retirement date nears.

Prior research has shown that a simple target-date pension strategy often outperforms other

investment strategies and can generate better pension outcomes in various market scenar-

ios (Bodie and Treussard, 2007; Elton et al., 2015). As one of the most commonly used

target-date pension strategies, the lifecycle pension management strategy has become an

important pillar of old-age provision in the United States and Europe. In the foreseeable

1 This chapter is published in Bai, Z., & Wallbaum, K. (2020). Optimizing Pension Outcomes Using
Target-Driven Investment Strategies: Evidence from Three Asian Countries with the Highest Old-Age
Dependency Ratio. Asia-Pacific Journal of Financial Studies, 49(4), 652-682. ©2020, Korean Securities
Association. DOI: https://doi.org/10.1111/ajfs.12310.
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future, the lifecycle concept will also play a more critical role in other global pension mar-

kets.

Motivated by the most recent global financial market drawdown caused by the COVID-19

pandemic (Baker et al., 2020) and the low expected market return environment (Horneff

et al., 2018), we propose a new combined pension management strategy that aims to im-

prove the traditional lifecycle pension investment concept in different market conditions.

To develop this new strategy, we attach a dynamic risk management overlay called the tar-

get volatility mechanism to a simple lifecycle pension strategy as an additional investment

protection mechanism for pension portfolios in more volatile markets. We set up a 20-year

hypothetical pension scheme and conduct corresponding analyses based on historical time

series to compare the performances of two pension strategies—the simple linear lifecycle

pension strategy (hereafter referred to as the lifecycle strategy) and the simple linear life-

cycle pension strategy with the target volatility overlay (hereafter referred to as the target

volatility strategy or the combined strategy) in three investment regions: Japan, China, and

South Korea. We focus on these three countries because they are projected to have the

highest old-age dependency ratio by 2050 (United Nation, 2020). We believe that propos-

ing a suitable pension investment strategy for them could help reduce the financial burden

placed on their working forces as a result of supporting the old-age population in the fu-

ture. Our numerical results suggest that the target volatility strategy could lead to higher

portfolio returns in these three Asian markets. More importantly, we also find that the tar-

get volatility strategy could provide effective capital protection when a pension portfolio

encounters market turbulence, such as the 2008 financial crisis, and that it could reduce the

overall portfolio downside risk over the hypothetical pension scheme. Consequently, we

find that the target volatility mechanism could improve various pension outcomes and offer

effective capital protection when combined with the lifecycle pension strategy.

5



2.2 Literature Review

For decades, one of the most widely used pension strategies has been the lifecycle pension

strategy, which belongs to the target date concept family. The lifecycle pension strategy

reduces the risky asset exposure of a pension portfolio as it approaches the “target date”

(Graf, 2017) so that the pension portfolio is secure as a future retiree approaches retirement

age. Benefits of the lifecycle pension strategy have been well documented. Prior studies

have shown that pension investors benefit from the lifecycle pension strategy because of

its simple asset management procedure that is based on a fixed glide path (Tang and Lin,

2015). Hence, the lifecycle pension strategy is often considered to be the default pension

investment strategy in pension practice. Other studies have shown that the lifecycle pension

strategy is a flexible portfolio management strategy that could be combined with other pen-

sion concepts in order to achieve different pension targets (Mitchell et al., 2009). However,

recent studies have cast new doubt on the classical lifecycle pension investment strategy.

For instance, although lifecycle pension strategies have been shown to be superior to money

market funds, they often underperform the balanced mandates that hold a constant asset al-

location of 50% risky assets and 50% risk-free assets throughout the pension accumulation

phase (Blanchett and Kaplan, 2018). Further studies have shown that the traditional life-

cycle pension strategy needs a more dynamic risk management concept, which could react

better to unforeseeable market turbulence and adjust asset allocation accordingly (Dhillon

et al., 2016).

In response to the current low market return environment and volatile equity market condi-

tions, which have brought new challenges to existing pension investment strategies in dif-

ferent markets, prior studies have shown the advantages of implementing various dynamic

risk control measures in order to improve the performance of existing long-term investment

strategies. For example, efficient volatility estimations in time-series momentum strategies

could significantly reduce portfolio turnover without deterring their performance (Baltas

6



and Kosowski, 2020) and a dedicated risk management method for the risk of momentum

could improve the performance of a momentum strategy (Barroso and Santa-Clara, 2015).

Additional studies have shown that a dynamic momentum strategy that uses forecasted

return and variance of momentum could outperform a static one (Daniel and Moskowitz,

2016) and that a diversified portfolio of time-series momentum strategies often yields better

performance in extreme market conditions (Moskowitz et al., 2012). The target volatility

mechanism could represent another important dynamic pension investment strategy em-

bedded with a risk control component (Albeverio et al., 2013; Cirelli et al., 2017). In con-

trast to the traditional lifecycle pension strategy, which follows a glide-path asset allocation

concept, the target volatility mechanism adjusts pension portfolio allocation on the basis

of pre-specified target volatility and realized market volatility (Albeverio et al., 2018). In

other words, the target volatility mechanism allows for a flexible portfolio asset adjustment

between risky assets and risk-free assets, regardless of the pension target date. Moreover,

the target volatility mechanism is found to be an effective capital measure for different

assets over a long investment timeframe (Albeverio et al., 2019). Furthermore, it is well

acknowledged that pension management strategies with a target risk management compo-

nent might be more suitable for pension investors in comparison to traditional target-date

pension strategies in volatile markets (Elton et al., 2016; Moreira and Muir, 2017; Barro

et al., 2019).

Owing to the limitations of the lifecycle pension strategies identified in previous studies

and possibly unforeseeable market turbulence in the future, the present study proposes a

new pension investment strategy that uses the target volatility mechanism as a “patch” for

the classical linear lifecycle pension strategy. The contribution of this paper is twofold.

First, our study contributes to the existing literature on pension management strategies by

showing that the target volatility mechanism can improve pension performance when it is

combined with the commonly used lifecycle concept in the markets examined in this paper.

To the best of our knowledge, this is also the first attempt to examine the target volatil-
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ity mechanism in three countries (i.e. Japan, South Korea, and China) that are projected

to have the highest old-age dependency ratio. Second, this study suggests that the target

volatility mechanism embedded with a daily rebalancing asset management concept is fea-

sible for practical implementation even when taking transaction costs into consideration.

Subsequently, our paper presents guidelines for both scholars and practitioners on how to

implement the lifecycle concept in an alternative manner.

2.3 Two Pension Strategies

Pension investment strategies often aim to provide a sufficient amount of capital for retirees

by the time they reach retirement age so that their living expenses can be covered after they

retire. To optimize different pension portfolio outcomes, both pension practitioners and

scholars have proposed various asset management approaches. For instance, the balanced

mandate, which consists of 50% equity and 50% bond, is often shown to be a simple

and effective investment strategy in a pension accumulation context (Finke and Blanchett,

2016). Alternatively, the lifecycle pension strategy is often selected as the default portfolio

management strategy for the 401K in the United States (Mitchell and Utkus, 2012). This

section introduces the lifecycle and target volatility strategies as well as our new setups for

them.

2.3.1 Lifecycle strategy

In contrast with other pension investment strategies—such as the balanced mandates, which

maintain a constant asset allocation of 50% risky and 50% risk-free assets over the pension

accumulation phase—the lifecycle strategy gradually reduces risky assets that are embed-

ded in the pension portfolio as its target date approaches (i.e. usually the investor’s retire-

ment date). Specifically, a pension portfolio under a lifecycle strategy often consists of

a large portion of risky assets (e.g. 100% pure equities) at the beginning of the pension
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accumulation stage in order to enhance its probability to gain from risky markets. As the

investor approaches retirement age, the asset allocation of their pension portfolio gradually

leans more toward risk-free assets, such as bonds or money market instruments, in order to

maximize pension portfolio protection.

2.3.2 Target volatility strategy

To date, studies have shown that different target-driven investment strategies, such as the

target volatility mechanism, could provide effective capital protection under various volatile

market conditions (Blake et al., 2013; Albeverio et al., 2018). In contrast to the lifecycle

strategy, which consistently decreases the risky asset allocation over the pension accumu-

lation phase, the target volatility strategy contains a dynamic risk management component

that aims to adjust the asset allocation of a pension portfolio on a daily, monthly, or yearly

basis. This has particular advantages because pension portfolios that are under the lifecy-

cle strategy usually miss the opportunity to gain from risky markets as they get closer to

their target date. Furthermore, the target volatility strategy is also a performance-driven

investment strategy that could change the asset allocation of a pension portfolio based on

market performance. Hence, a pension portfolio under the target volatility strategy could

react better to rapidly changing market conditions.

To implement the target volatility strategy, a pre-determined target volatility is first speci-

fied at the beginning of the pension accumulation stage. Then, the asset allocation of the

pension portfolio is further determined using a ratio between the target volatility and the

realized market volatility, as follows:

αt = min{T
Vt

;L} (2.1)

βt = 1−αt (2.2)
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In the above formulas, T represents the target volatility specified at the beginning of the

pension accumulation stage, Vt stands for the realized market volatility derived from daily

market returns, and L represents the maximum risky asset allocation that prevents the port-

folio from excessive exposure to risky assets. Subsequently, αt and βt represent the risky

and risk-free asset allocation, respectively.

Next, we provide an example of a pension portfolio under a target volatility strategy. Let us

assume that a pension investor chooses a target volatility strategy with a target volatility of

20% and that the realized market volatility was 40%. The maximum risky asset allocation

would be capped at 150%.

α1 = min{20%
40%

;150%}= 50%

β1 = 1−50% = 50%

The investor would allocate 50% of the capital into risky assets and the remaining 50%

into risk-free assets. In the next month, let us suppose that the realized market volatility

decreases to 15%.

α1 = min{20%
15%

;150%}= 133%

β1 = 1−133% =−33%

Then, the investor would allocate 100% of the capital into risky assets and would borrow

an additional 33% of the capital from local banks to invest in risky assets.

2.3.3 Pension strategy setups

For the lifecycle strategy, we consider a simple pension portfolio that consists of a risky

asset portion represented by equities and a risk-free asset portion represented by bonds.

The pension portfolio starts at 100% equity and 0% bond at the beginning of the 20-year
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pension scheme, switching 5% of the equities to bonds each year. The idea is to secure

the pension portfolio as the end of the 20-year pension scheme approaches (i.e. the target

date).

A pension portfolio under the target volatility strategy also consists of both risky and risk-

free asset portions. However, the risky asset portion of this pension portfolio under the

target volatility strategy consists of a combination of equities and bonds, which follows

the lifecycle strategy. The risk-free asset portion of the pension portfolio under the tar-

get volatility strategy includes money market instruments, which are represented by local

three-month internal bank rates or immediate bank rates. Then, we use the target volatility

mechanism to determine the risky and risk-free asset allocation of the pension portfolio

under the target volatility strategy. To remain consistent with the concept of the lifecycle

pension strategy, which gradually reduces the risky asset portion of a pension portfolio as

it approaches the target date, we also set up the target volatility strategy to have a constant

target volatility decreasing rate (hereafter referred to as a target volatility scenario). The

idea is to secure the pension portfolio by lowering the target volatility as the target date

approaches. For example, a target volatility scenario of “20%;1%” indicates that the target

volatility is specified as 20% at the beginning of the 20-year hypothetical pension scheme

and that it has an annual decreasing rate of 1%. To evaluate the performance of this target

volatility strategy under different target volatilities, we examine 10 target volatility scenar-

ios with starting target volatility ranges from 10% to 19%, covering the commonly used

target volatility levels when applying the target volatility mechanism in pension investment

practice. We also cap the maximum risky asset allocation to 150% in order to prevent the

pension portfolio from being overexposed to risky assets. Admittedly, selecting a target

volatility scenario and the maximum risky asset allocation level is an ambiguous process.

Future studies might decide to choose different parameters for their target volatility scenar-

ios and compare the results.
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To achieve effective portfolio protection when encountering a turbulent event, the target

volatility strategy adjusts the asset allocation of a pension portfolio between the risky and

risk-free asset classes. The transaction cost, which would occur in the event of adjustment,

could affect the ability of a pension portfolio to generate desirable returns. Since we adopt

a daily rebalancing mechanism in our target volatility strategy, the influence of transaction

cost on portfolio returns could be significant. Prior research points out a wide range of

transaction costs in different trading scenarios. For example, (Hurst et al., 2017) suggest

a transaction cost between 6bps to 34bps for trades on the equity asset class, based on an

investment period between 1880 and 2013. (Clare et al., 2017) propose using 0.20% of

the investment value (i.e. 20bps) as a one-way transaction cost when examining a trend-

following methodology. Since the target volatility mechanism could also be considered

as an asset allocation strategy that follows market volatility trends, we consider a 20bps

transaction cost for the markets examined in this paper. A higher transaction cost would

foreseeably lower the pension portfolio returns and yield a more conservative estimation.

Hence, although beyond the scope of the present study, the performance of a target volatility

strategy under different transaction cost levels merits future exploration

2.4 Data and Methodology

In this section, we introduce the investment regions, data, and different risk–return profiles

that we use for our analyses.

2.4.1 Investment regions and data selection

In this study, we evaluate the performance of our newly proposed target volatility strategy in

Japan, South Korea, and China. We use the World Population Aging 2019 report, obtained

from the Department of Economic and Social Affairs of the United Nations, as a reference

for selecting the markets for our analysis. According to the report, Japan, South Korea, and
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China are projected to have the highest old-age dependency ratio by 2050 (United Nation,

2020). The old-age dependency ratio refers to the ratio between the number of people

who are retired and the number of people who are working (Ediev et al., 2019). When a

country has a high old-age dependency ratio, its working forces face a greater burden to

support the living expenses of its elderly population (Pezzulo et al., 2017). Therefore, for

the present study, we evaluate and compare the performance of a pension portfolio under

the lifecycle strategy and the target volatility strategy in three countries that are predicted

to have the highest old-age dependency ratio in the future. Our intention is not to use the

markets of Japan, South Korea, and China to represent the Asian market as a whole but to

only consider them as markets of interests in the present study. Future studies could select

different markets for analyses.

The data for our analyses are extracted from Federal Reserve Economic Data and Bloomberg.

We follow the existing literature to select daily historical times series of equities and bonds

for the markets examined in this paper. We use the Nikkei 225 (Takahashi and Xu, 2016),

Korea Composite Stock Price Index 200 (KOSPI; (Qin and Heo, 2017)), and Shanghai

Stock Exchange Composite Index (SSE Composite; (Ahmed et al., 2017)) to represent the

equity markets of Japan, South Korea, and China, respectively. For the bond markets, we

use the commonly applied Bloomberg Barclays Aggregated family indices. Specifically,

we use the Barclays Japanese Aggregate, the Barclays China Aggregate index (Kiymaz

and Simsek, 2017; Lai, 2018; Martin and Sankaran, 2019), and the Korea Bond Index 120

(Lee et al., 2019) to represent the bond markets in the chosen investment regions. In this pa-

per, we also examine the performances of the lifecycle and target volatility strategies from

a global perspective, as a reference. Consequently, we use the MSCI World index (Umer

et al., 2018) and the Barclays Global Aggregate index (Clare et al., 2019) to represent the

world equity and bond markets, respectively.
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2.4.2 Methodology

To evaluate the performance of the aforementioned two pension strategies, we consider a

20-year pension scheme—from March 2000 to March 2020. We select this time period

because it includes the 2008 financial crisis as well as the most recent financial market

turbulence of early 2020. We believe that these two recent financial market shocks of-

fer suitable scenarios for examining whether or not our newly proposed target volatility

strategy could provide pension-effective capital protection when facing market turbulence.

Now, we calculate and compare different risk–return profiles of the pension portfolio under

the lifecycle strategy and the target volatility strategy.

First, we calculate the risk–return ratio of the considered pension portfolio under each

pension investment management strategy. The risk–return ratio is calculated as follows:

Risk− return ratio =
Rt

V (ERt/|ERt |)
t

(2.3)

The risk–return ratio could be viewed as a scaled portfolio return, which is a ratio between

portfolio return and portfolio volatility. Rt represents the annual return of the pension

portfolio in year t. Vt stands for the annualized volatility that is based on the daily returns

in year t. ERt represents the excessive return of the pension portfolio in year t, which is

the difference between the annual return of the retirement portfolio and the annual risk-free

rate. We apply an ERt/|ERt | adjustment to the portfolio volatility so that the ratio will still

be an effective measure when portfolio returns are negative (see Israelsen (2003); Israelsen

et al. (2005) for details). The risk–return ratio shows the annual return that the pension

portfolio could generate with every unit of risk. For the pension portfolio that is under

lifecycle strategy and target volatility, we measure the risk–return ratio on a yearly basis

over its 20-year retirement span and provide summary statistics for the risk–return ratio for

the lifecycle and target volatility strategies in each of the studied investment regions.
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Then, we calculate the 90%, 95%, and 99% value-at-risk (VAR) and conditional value-at-

risk (CVAR) based on the one-year rolling annual returns of the pension portfolio under the

two pension strategies. The 90%, 95%, and 99% VAR and CVAR measure the downside

risk of the pension portfolio within a one-year investment span over the 20-year pension

scheme. In other words, the 90%, 95%, and 99% VAR and CVAR demonstrate the worst

10%, 5%, and 1% expected annual returns of the pension portfolio within a one-year invest-

ment window over the 20-year pension span. In this paper, we use the historical method to

calculate the VAR and CVAR at different levels. In other words, we first calculate the one-

year rolling annual returns of the pension portfolio under each pension investment strategy

(i.e. the lifecycle strategy and the target volatility strategy, respectively) and order the an-

nual returns from lowest to highest. Subsequently, we use 90%, 95%, and 99% confidence

levels to locate the corresponding VAR and CVAR values of the pension portfolio. When

evaluating the performance of the pension portfolio based on the VAR and the CVAR, the

CVAR is often considered to be a more conservative measure in comparison to the VAR.

Moreover, since we use the historical approach to measure the VAR and the CVAR, the

VAR is based on a single observation, while the CVAR is based on the average of sev-

eral observations. Thus, we believe that the CVAR could be a more robust measure in

comparison to the VAR.

We calculate annualized volatility using the daily returns of the pension portfolio in each fi-

nancial year and generate the summary statistics for the annualized volatility of the pension

portfolio under each pension strategy over the 20-year pension scheme. Annualized volatil-

ity captures the variation of portfolio returns in a financial year, which is often considered

to be a proxy for measuring portfolio risk. We also create pension portfolio volatility paths

to illustrate change in the annualized volatility of our pension portfolio under the lifecycle

strategy and the target volatility strategy for each financial year over the 20-year pension

scheme.
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The annualized volatility of a portfolio shows the variation in portfolio returns over an

investment period. However, annualized volatility does not differentiate upward variations

from downward variations. In other words, annualized volatility may not be an informative

measure if we wish to analyze the downside risk of our pension portfolio under the two

pension strategies. Consequently, we also present the results for the downside deviation

of the pension portfolio under each pension strategy. As an extended risk measure for

annualized volatility, downside deviation measures the so-called “bad variations” in the

returns that are below a specified threshold, which is often addressed as the minimum

acceptable return. The downside deviation is calculated as follows:

DRt = min(0,Rt−MARt) (2.4)

DD =

√
∑(DRt)2

n
(2.5)

In the above formulas, Rt represents the annual return and MARt represents the minimum

acceptable return of the pension portfolio in year t. We set the minimum acceptable return

as the annual risk-free rate (Elmesseary, 2014) in year t. The downside return is represented

by DRt , which equals the difference between the annual return of the pension portfolio and

the minimum acceptable return if the difference is positive and is otherwise zero. Finally, n

represents the total number of investment periods and DD stands for the downside variation

of the pension portfolio over the 20-year pension span.

2.5 Results

Table 2.1 presents the summary statistics for the risk–return ratio of the pension portfolio

under the two pension investment strategies in Japan, South Korea, and China.
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Table 2.1: Summary statistics for the portfolio risk-return ratio

This table reports the summary statistics for the risk-return ratio of the pension portfolio under the lifecycle strategy and the target volatility strategy. The risk-return ratio is a ratio
between the annualized return and the annualized volatility measured on a yearly basis over the twenty-year pension span. TVS stands for target volatility scenarios. A target
volatility scenario of 10%; 0.50% indicates that the target volatility strategy starts at 6% at the beginning of the twenty-year pension scheme and then decreases by 0.50% every
subsequent year.

Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
Max 3.725 11.063 10.132 9.350 8.683 8.109 7.609 7.170 6.782 6.435 6.125
Mean 0.896 1.317 1.257 1.211 1.172 1.138 1.111 1.090 1.068 1.046 1.025
Min -0.058 -0.020 -0.025 -0.030 -0.035 -0.040 -0.045 -0.049 -0.053 -0.057 -0.060

Japan
Max 2.656 3.748 3.451 3.204 2.995 2.829 2.835 2.861 2.883 2.907 2.935
Mean 0.911 1.012 0.977 0.948 0.924 0.904 0.886 0.871 0.859 0.847 0.838
Min -0.081 -0.019 -0.023 -0.027 -0.031 -0.036 -0.040 -0.046 -0.051 -0.057 -0.063

South Korea
Max 3.095 2.903 2.858 2.822 2.794 2.772 2.754 2.741 2.731 2.723 2.718
Mean 0.797 0.873 0.848 0.827 0.811 0.797 0.785 0.775 0.766 0.759 0.753
Min -0.143 -0.011 -0.013 -0.016 -0.019 -0.023 -0.026 -0.030 -0.034 -0.039 -0.043

China
Max 5.278 30.712 27.927 25.607 23.643 21.961 20.502 19.226 18.100 17.099 16.203
Mean 1.149 2.833 2.641 2.480 2.345 2.230 2.130 2.042 1.965 1.896 1.834
Min -0.049 -0.015 -0.018 -0.021 -0.024 -0.028 -0.032 -0.037 -0.041 -0.045 -0.049
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In terms of the risk–return ratio, the target volatility strategy (i.e. the lifecycle strategy with

the target volatility overlay) outperforms the lifecycle strategy from a global perspective.

In contrast to the lifecycle strategy, which has an average risk–return ratio of 0.896, the

target volatility strategy shows an average risk–return ratio greater than 1.025 (i.e. when

the target volatility scenario is 19%;0.95%) when looking at the global market.

In Japan and South Korea, we see that the pension portfolio that uses the target volatility

strategy shows a higher risk–return ratio in comparison to that of the lifecycle strategy in

some but not all target volatility scenarios. Specifically, in terms of the average risk–return

ratio, the target volatility strategy outperforms the lifecycle strategy in Japan and South

Korea when the starting target volatility level is smaller than 14%. When the starting target

volatility level is smaller than 14%, the pension portfolio using the target volatility strategy

results in an average risk–return ratio higher than 0.924 and 0.811 in comparison to the

pension portfolio using the lifecycle strategy, which shows an average risk–return ratio of

0.911 and 0.797 in Japan and South Korea, respectively.

The target volatility strategy shows the most prominent results in China, where the target

volatility strategy could generate a higher risk–return ratio relative to the lifecycle strat-

egy in all the target volatility scenarios examined in this paper. Specifically, the average

risk–return ratio of the pension portfolio is 1.149 under the lifecycle strategy while it is

higher than 1.834 under the target volatility strategy, suggesting that the target volatility

strategy could generate higher portfolio return relative to the lifecycle strategy when look-

ing at the same portfolio risk level.

Another important finding relates to the minimum risk–return ratio. In the three examined

investment regions, the minimum risk–return ratios of the pension portfolio under the tar-

get volatility strategy are equal to or higher than those of the portfolios under the lifecycle

strategy. We further find that those minimum risk–return ratios occurred in 2008 when the

financial markets in those investment regions were affected by the subprime financial crisis

18



in the United States. This provides indirect evidence that, in contrast to the lifecycle strat-

egy, the target volatility strategy could better protect pension portfolios when encountering

financial market turbulence.

Overall, the summary statistics results suggest that, under certain target volatility scenarios,

the pension portfolio using the target volatility strategy could generate a higher return than

that using the lifecycle strategy in Japan, South Korea, and China. Attaching the target

volatility mechanism to the lifecycle strategy could thus provide effective capital protection

when facing unforeseeable market shocks.

In Table 2.2, we present results of the 99%, 95%, and 90% VAR for the one-year rolling

annual returns of the pension portfolio over the 20-year pension scheme. The 99%, 95%,

and 90% VAR measure the worst 1%, 5%, and 10% expected loss of the pension portfolio

over a one-year investment window.

From a global perspective, there is a 1%, 5%, and 10% chance that the pension portfolio

under the lifecycle strategy could expect a 27.260%, 20.714%, and 15.096% loss, respec-

tively, in a one-year investment window over the 20-year pension scheme. When the start-

ing target volatility level is smaller or equal to 12%, the pension portfolio using the target

volatility strategy has a 1%, 5%, and 10% chance of losing less than 26.147%, 19.487%,

and 13.740% in a one-year investment window. Therefore, with respect to the 99%, 95%,

and 90% VAR, the target volatility strategy outperforms the lifecycle strategy when target

volatility scenarios have a starting target volatility level that is equal to or less than 12%.
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Table 2.2: The 90%, 95%, and 99% portfolio value-at-risk results

This table reports the 90%, 95%, and 99% VAR of the pension portfolio under the lifecycle strategy and the target volatility strategy. The 90%, 95%, and 99%
VAR are calculated based on the one-year annualized rolling returns of the pension portfolio over the twenty-year pension span, which measures the expected loss
of the pension portfolio over a one-year investment window. TVS stands for target volatility scenarios. A target volatility scenario of 10%; 0.50% indicates that
the target volatility strategy starts at 6% at the beginning of the twenty-year pension scheme and then decreases by 0.50% every subsequent year.

Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
99% VAR -27.260% -21.486% -23.880% -26.147% -28.274% -30.309% -31.982% -33.091% -33.924% -34.953% -35.540%
95% VAR -20.714% -15.916% -17.754% -19.487% -21.225% -22.832% -24.251% -25.314% -26.123% -26.865% -27.439%
90% VAR -15.096% -11.324% -12.526% -13.740% -14.911% -16.034% -17.166% -18.018% -18.787% -19.486% -19.933%

Japan
99% VAR -29.585% -18.597% -20.287% -21.941% -23.562% -25.149% -26.703% -28.225% -29.716% -31.178% -32.610%
95% VAR -22.078% -11.655% -12.762% -13.847% -14.917% -15.975% -17.020% -18.051% -19.073% -20.095% -21.102%
90% VAR -14.533% -6.602% -7.247% -7.907% -8.545% -9.204% -9.850% -10.494% -11.151% -11.780% -12.420%

South Korea
99% VAR -26.583% -7.805% -8.941% -10.056% -11.161% -12.306% -13.383% -14.452% -15.547% -16.589% -17.617%
95% VAR -15.133% -2.789% -3.534% -4.246% -4.947% -5.655% -6.323% -7.004% -7.707% -8.395% -9.054%
90% VAR -4.483% 0.013% -0.223% -0.536% -0.939% -1.339% -1.706% -2.114% -2.543% -2.934% -3.317%

China
99% VAR -39.028% -16.965% -18.718% -20.435% -22.100% -23.757% -25.316% -26.850% -28.300% -29.528% -30.687%
95% VAR -20.848% -12.542% -13.952% -15.241% -16.557% -17.889% -19.298% -20.495% -21.663% -22.695% -23.561%
90% VAR -14.690% -9.537% -10.687% -11.827% -12.962% -14.076% -15.146% -16.123% -17.086% -17.907% -18.755%
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In Japan, South Korea, and China, using the target volatility strategy shows higher 99%,

95%, and 90% VAR values in certain target volatility scenarios in comparison to adopting

the lifecycle strategy. The pension portfolio using the lifecycle strategy would have a 1%,

5%, and 10% likelihood of losing 29.585%, 22.078%, and 14.533%, respectively, over

a one-year investment span in Japan. Given those confidence levels, the target volatility

strategy could lower the expected losses of a pension portfolio when the starting target

volatility level is smaller or equal to 16%, resulting in a 1%, 5%, and 10% chance of

losing less than 28.225%, 18.051%, and 10.494% respectively. In South Korea, the target

volatility strategy outperforms the lifecycle strategy in all target volatility scenarios. There

is a 1%, 5%, and 10% chance that the pension portfolio would have less than 17.617%,

9.054%, and 3.317% loss when using the target volatility strategy in comparison to a loss

of 26.583%, 15.133%, and 4.483%, respectively, when choosing the lifecycle strategy in

South Korea. In China, the pension portfolio using the target volatility strategy shows a 1%,

5%, and 10% likelihood of one-year expected loss (i.e. 23.757%, 17.889%, and 14.076%,

respectively) in comparison to that of the lifecycle strategy (i.e. 39.028%, 20.848%, and

14.690%, respectively) when the target volatility scenario has a starting target volatility

level that is equal to or less than 14%.

From the VAR results, we observe that the VAR decreases as the starting target volatility

level increases, indicating that there could be a negative association between the target

volatility level and the one-year expected loss of a pension portfolio. This is not surprising

because a higher target volatility level allows for a greater portion of risky assets in the

pension portfolio. Hence, selecting a suitable target volatility level is an essential step

when employing the target volatility strategy.

As an extended VAR risk measure, the CVAR represents the average expected loss of a

pension portfolio given a confidence level. For instance, the 95% CVAR of the annual

return is the average of the expected annual loss of a portfolio in the worst 5% annual

21



return cases. Table 2.3 presents the results of 99%, 95%, and 90% CVAR for the one-year

rolling annual returns of our pension portfolio under the two pension strategies.

The CVAR results are similar to the VAR results. In general, under certain target volatility

scenarios, the pension portfolio using the target volatility strategy shows a lower one-year

expected loss in comparison to the lifecycle strategy. Consistent with the VAR results, the

target volatility strategy outperforms the lifecycle strategy when the starting target volatil-

ity level is equal to or less than 12% when looking at the global market. In Japan, the

pension portfolio under the lifecycle strategy has a 1%, 5%, and 10% chance of encoun-

tering an average one-year loss of 32.443%, 26.255%, and 22.285% in comparison to less

than 31.943%, 26.594%, and 20.603% when using the target volatility strategy that has a

starting target volatility level of less than 18%. With respect to the CVAR, the pension port-

folio using the target volatility strategy would expect a 1%, 5%, and 10% chance of loss

20.284%, 14.405%, and 10.058% or less on average relative to 29.332%, 21.922%, and

15.973% when using the lifecycle strategy in South Korea. In China, the target volatility

strategy also outperforms the lifecycle strategy in all target volatility scenarios. Under the

target volatility strategy, the one-year average expected loss is less than 33.252%, 27.697%,

and 24.361% based on the 99%, 95%, and 90% CVAR, respectively, while the one-year ex-

pected loss of the pension portfolio under the lifecycle strategy is 41.190%, 31.194%, and

24.367%, respectively.
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Table 2.3: The 90%, 95%, and 99% portfolio conditional value-at-risk results

This table reports the 90%, 95%, and 99% VAR of the pension portfolio under the lifecycle strategy and the target volatility strategy. The 90%, 95%, and 99%
VAR are calculated based on the one-year annualized rolling returns of the pension portfolio over the twenty-year pension span, which measures the expected loss
of the pension portfolio over a one-year investment window. TVS stands for target volatility scenarios. A target volatility scenario of 10%; 0.50% indicates that
the target volatility strategy starts at 6% at the beginning of the twenty-year pension scheme and then decreases by 0.50% every subsequent year.

Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
99% CVAR -28.858% -23.068% -25.458% -27.773% -29.964% -32.069% -33.859% -35.187% -36.286% -37.313% -38.107%
95% CVAR -24.877% -19.256% -21.326% -23.345% -25.276% -27.146% -28.772% -30.036% -31.068% -32.026% -32.726%
90% CVAR -21.211% -16.409% -18.178% -19.907% -21.573% -23.168% -24.596% -25.721% -26.652% -27.521% -28.156%

Japan
99% CVAR -32.443% -19.152% -20.877% -22.565% -24.215% -25.830% -27.409% -28.954% -30.465% -31.943% -33.389%
95% CVAR -26.255% -15.692% -17.142% -18.565% -19.964% -21.338% -22.687% -24.013% -25.315% -26.594% -27.850%
90% CVAR -22.285% -12.008% -13.138% -14.252% -15.349% -16.431% -17.497% -18.548% -19.583% -20.603% -21.609%

South Korea
99% CVAR -29.332% -9.298% -10.591% -11.865% -13.121% -14.358% -15.579% -16.781% -17.965% -19.133% -20.284%
95% CVAR -21.922% -5.823% -6.819% -7.805% -8.779% -9.743% -10.696% -11.639% -12.571% -13.493% -14.405%
90% CVAR -15.973% -3.439% -4.195% -4.949% -5.699% -6.442% -7.178% -7.908% -8.631% -9.348% -10.058%

China
99% CVAR -41.190% -18.571% -20.445% -22.255% -24.016% -25.780% -27.465% -29.109% -30.633% -32.020% -33.252%
95% CVAR -31.194% -15.027% -16.624% -18.157% -19.645% -21.175% -22.668% -24.099% -25.415% -26.602% -27.697%
90% CVAR -24.367% -12.975% -14.409% -15.796% -17.146% -18.527% -19.880% -21.164% -22.341% -23.398% -24.361%
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Next, we present the descriptive statistics for the annualized volatility of the pension port-

folio under the lifecycle strategy and the target volatility strategy. We also show the pension

portfolio volatility paths for the annualized volatility of the pension portfolio under each

strategy using the 15%;0.75% target volatility scenario as an example. The pension portfo-

lio volatility paths visualize the differences and changes in the annualized volatility under

the two pension investment strategies by year over the 20-year pension scheme.

Based on the results shown in Table 2.4, the pension portfolio using the target volatility

strategy shows a significantly lower maximum, average, and minimum annualized volatil-

ity in comparison to that of the lifecycle strategy over the 20-year pension scheme. In

contrast to the lifecycle strategy, which shows an average annualized volatility of 8.833%,

the target volatility strategy results in an average annualized volatility that is smaller than

6.856% when looking at the world market. The difference in the average annualized volatil-

ity between the lifecycle strategy and the target volatility strategy is more pronounced in

the three Asian markets. The pension portfolio using the lifecycle strategy has an aver-

age annualized volatility of 11.930%, 12.920%, and 11.724% in Japan, South Korea, and

China, respectively, while the pension portfolio using the target volatility strategy could

maintain the average annualized volatility at a level smaller than 6.635%, 6.646%, and

6.655%, respectively.

Figures 2.1 to 2.4 show the pension portfolio volatility paths of the pension portfolio under

the lifecycle strategy and the target volatility strategy over the 20-year pension scheme.

Here, we use the 15%;0.75% target volatility scenario as an example because it represents

a middle-level target volatility case among the target volatility scenarios we examine in

this paper. The annualized volatility changing paths for other target volatility scenarios are

similar to the example we demonstrate here.
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Table 2.4: Summary statistics for the portfolio annualized volatility

This table reports the summary statistics for the annualized volatility of the pension portfolio under the lifecycle strategy and the target volatility strategy. The
annualized volatility of the pension portfolio is measured on a yearly basis over the twenty-year pension span. TVS stands for target volatility scenarios. A target
volatility scenario of 10%; 0.50% indicates that the target volatility strategy starts at 6% at the beginning of the twenty-year pension scheme and then decreases by
0.50% every subsequent year.

Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
Max 21.110% 10.198% 11.170% 12.145% 13.099% 14.039% 14.923% 15.722% 16.475% 17.190% 17.832%
Mean 8.833% 3.836% 4.216% 4.593% 4.961% 5.319% 5.664% 5.988% 6.294% 6.583% 6.856%
Min 2.932% 0.176% 0.193% 0.210% 0.227% 0.244% 0.261% 0.278% 0.295% 0.312% 0.330%

Japan
Max 26.826% 9.970% 10.967% 11.964% 12.961% 13.958% 14.955% 15.953% 16.950% 17.947% 18.944%
Mean 11.930% 3.501% 3.851% 4.202% 4.552% 4.902% 5.251% 5.599% 5.946% 6.291% 6.635%
Min 2.053% 0.092% 0.101% 0.110% 0.120% 0.129% 0.138% 0.147% 0.156% 0.166% 0.175%

South Korea
Max 44.044% 9.931% 10.924% 11.917% 12.910% 13.903% 14.896% 15.888% 16.881% 17.874% 18.867%
Mean 12.920% 3.498% 3.848% 4.197% 4.547% 4.897% 5.247% 5.597% 5.947% 6.296% 6.646%
Min 0.561% 0.027% 0.030% 0.032% 0.034% 0.036% 0.039% 0.041% 0.043% 0.046% 0.048%

China
Max 25.061% 9.835% 10.756% 11.693% 12.646% 13.573% 14.491% 15.400% 16.258% 17.098% 17.902%
Mean 11.724% 3.567% 3.921% 4.274% 4.626% 4.974% 5.319% 5.663% 6.001% 6.332% 6.655%
Min 1.220% 0.032% 0.035% 0.038% 0.042% 0.045% 0.048% 0.051% 0.054% 0.058% 0.061%
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For all the markets examined in the present study, we see that both strategies (i.e. the

lifecycle strategy and the target volatility strategy) are able to gradually lower the annu-

alized volatility of the pension portfolio as it approaches the end of its 20-year pension

span. This pattern ties well with the pension management concept held by the traditional

lifecycle strateg—securing the pension portfolio when approaching the target date (e.g. the

retirement date). Nonetheless, for the year 2008, the annualized volatility of the pension

portfolio increased dramatically under the lifecycle strategy, while it remained at a constant

level for the portfolio using the target volatility strategy in all four investment regions. This

finding is rather important because it shows that the target volatility strategy can provide

effective capital protection for a pension portfolio when encountering shocking financial

events, such as the 2008 financial crisis. This is further confirmed by the volatility chang-

ing paths for China, which experienced another market turbulence in 2015. Once again,

the annualized volatility of the pension portfolio using the lifecycle strategy jumped up,

while that using the target volatility strategy remained unchanged. We also see the same

pattern in the most recent global market, where the annualized volatility of the pension

portfolio using the lifecycle strategy increases in 2020 due to the market shock caused by

the COVID-19 pandemic. Meanwhile, the annualized volatility of the pension portfolio

using the target volatility strategy is controlled and at a low level. Therefore, it is evident

that the target volatility strategy could provide more effective portfolio protection than the

lifecycle strategy in the investment regions examined in this paper.
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Figure 2.1: Volatility changing path: World

This diagram shows change in annualized volatility of the pension portfolio under the lifecycle strategy and
the target volatility strategy by year over the twenty-year pension span. The dashed line represents the
annualized volatility of the pension portfolio under the lifecycle strategy and the solid line represents the
annualized volatility of the pension portfolio under the target volatility strategy.

Figure 2.2: Volatility changing path: Japan

This diagram shows change in annualized volatility of the pension portfolio under the lifecycle strategy and
the target volatility strategy by year over the twenty-year pension span. The dashed line represents the
annualized volatility of the pension portfolio under the lifecycle strategy and the solid line represents the
annualized volatility of the pension portfolio under the target volatility strategy.
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Figure 2.3: Volatility changing path: South Korea

This diagram shows change in annualized volatility of the pension portfolio under the lifecycle strategy and
the target volatility strategy by year over the twenty-year pension span. The dashed line represents the
annualized volatility of the pension portfolio under the lifecycle strategy and the solid line represents the
annualized volatility of the pension portfolio under the target volatility strategy.

Figure 2.4: Volatility changing path: China

This diagram shows change in annualized volatility of the pension portfolio under the lifecycle strategy and
the target volatility strategy by year over the twenty-year pension span. The dashed line represents the
annualized volatility of the pension portfolio under the lifecycle strategy and the solid line represents the
annualized volatility of the pension portfolio under the target volatility strategy.

Finally, we present the downside deviation of the pension portfolio over the twenty-year

pension scheme in Table 5.
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Table 2.5: Portfolio downside deviation results

This table reports the downside deviation of the pension portfolio under the lifecycle strategy and the target volatility strategy. Results are calculated based on
portfolio volatilities associated with negative excess portfolio returns over the twenty-year pension span. A target volatility scenario of 10%; 0.50% indicates that
the target volatility strategy starts at 6% at the beginning of the twenty-year pension scheme and then decreases by 0.50% every subsequent year.

Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World 10.427% 7.766% 8.469% 9.156% 9.811% 10.447% 11.002% 11.457% 11.827% 12.186% 12.485%
Japan 10.491% 5.483% 5.984% 6.476% 6.960% 7.437% 7.907% 8.368% 8.823% 9.271% 9.711%
South Korea 12.161% 4.846% 5.293% 5.733% 6.167% 6.595% 7.017% 7.432% 7.842% 8.245% 8.643%
China 9.261% 6.334% 6.903% 7.449% 7.979% 8.524% 9.060% 9.573% 10.050% 10.483% 10.883%
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Over the 20-year pension scheme, we see that the target volatility strategy could better con-

trol the portfolio downside deviation under all target volatility scenarios in both Japan and

South Korea. The downside deviation of the pension portfolio under the lifecycle strategy

is 10.491% and 12.161%, while its downside deviation under the target volatility strategy

is smaller than 9.711% and 8.643% in Japan and South Korea, respectively. The target

volatility strategy outperforms the lifecycle strategy when the target volatility scenario has

a starting target volatility level that is equal to or less than 13% when looking at the global

market. In China, using the lifecycle strategy results in a downside deviation of 9.261%

and in a downside deviation of less than 9.060% when using the target volatility strategy

with a starting volatility level that is equal to or less than 15%.

2.6 Robustness Check

To further examine whether or not attaching the target volatility mechanism to the life-

cycle strategy could better control portfolio risk, we first follow (Elton et al., 2016) and

use Jensen’s alpha regression approach (Jensen, 1968) to evaluate the beta of the pension

portfolio under both the lifecycle strategy and the target volatility strategy. According to

our results on the annualized volatility of the pension portfolio under these two strategies,

we find that the pension portfolio using the target volatility strategy results in significantly

lower annualized volatility than when using the lifecycle strategy over the 20-year pension

scheme. Hence, in this regression model, we focus on the beta of the pension portfolio be-

cause the portfolio alpha is not a suitable measure in Jensen’s regression for a comparison

between portfolios with different levels of risk (Cogneau and Hübner, 2009). Specifically,

we regress the excess return of the pension portfolio under each pension strategy on the

excess return of the local equity market at time t as follows:

RP
t − rt = αP +βP · (RM

t − rt)+ ε
P
t (2.6)
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In this empirical model, RP
t represents the one-year rolling annualized return of the pension

portfolio, while rt stands for the annual risk-free rate at time t. RM
t represents the one-year

rolling annualized return of the equity market, αP is Jensen’s alpha, and βP stands for the

portfolio’s beta.

Table 2.6 presents the regression results. Column 1 shows the regression results for the

pension portfolio under the lifecycle strategy and columns 2 to 11 report the regression

results for the pension portfolio under the target volatility strategy using different target

volatility scenarios.

We see that the beta coefficients of the excess return of equity markets (i.e. βP for RM
t − rt)

are smaller than one and are statistically significant at the 0.01 significance level, suggest-

ing that both the lifecycle strategy and the target volatility strategy could lower portfolio

risk by including risk-free assets in the pension portfolio in the four investment regions.

Specifically, when using the lifecycle strategy, the portfolio beta is 0.676, 0.528, 0.683,

and 0.525 in the world, Japan, South Korea, and China, respectively. When combining the

lifecycle strategy with the target volatility mechanism (i.e. the target volatility strategy),

we see that the beta coefficients are further reduced to a significantly lower level. Using the

target volatility strategy, the maximum portfolio beta is 0.666 in the world, 0.388 in Japan,

0.450 in South Korea, and 0.300 in China, all of which are lower than those obtained us-

ing the lifecycle strategy. This result confirms that adding the target volatility mechanism

to the lifecycle strategy could further mitigate market risk and provide additional capital

protection to a pension portfolio.
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Table 2.6: Jensen’s alpha regression results

The Jensen’s alpha regression model regresses the excess returns of a pension portfolio on the excess returns of equity markets in each investment region. In this
table, column (1) reports the regression results for the lifecycle strategy in the four investment regions. Column (2) to (11) report the regression results for the
target volatility strategy under each of the target volatility scenarios (i.e., from 10%;0.50% to 19%;0.95%) in the four investment regions. Standard errors in
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
βP 0.676 0.393 0.431 0.469 0.504 0.538 0.570 0.599 0.624 0.646 0.666

(0.004)*** (0.004)*** (0.005)*** (0.005)*** (0.006)*** (0.006)*** (0.006)*** (0.007)*** (0.007)*** (0.007)*** (0.007)***
αP -0.008 -0.019 -0.021 -0.022 -0.023 -0.024 -0.025 -0.026 -0.026 -0.027 -0.028

(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.877 0.617 0.617 0.617 0.618 0.620 0.622 0.625 0.631 0.638 0.647

Japan
βP 0.528 0.206 0.226 0.246 0.267 0.287 0.307 0.328 0.348 0.368 0.388

(0.004)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.005)*** (0.005)***
αP -0.002 -0.013 -0.014 -0.015 -0.016 -0.017 -0.018 -0.019 -0.020 -0.020 -0.021

(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.795 0.549 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550
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Table 2.6: Jensen’s alpha regression results (Continued)

The Jensen’s alpha regression model regresses the excess returns of a pension portfolio on the excess returns of equity markets in each investment region. In this
table, column (1) reports the regression results for the lifecycle strategy in the four investment regions. Column (2) to (11) report the regression results for the
target volatility strategy under each of the target volatility scenarios (i.e., from 10%;0.50% to 19%;0.95%) in the four investment regions. Standard errors in
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

South Korea
βP 0.683 0.231 0.255 0.279 0.303 0.327 0.351 0.376 0.400 0.425 0.450

(0.003)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.004)***
αP -0.002 -0.003 -0.003 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004

(0.001)*** (0.000)*** (0.000)*** (0.000)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.889 0.770 0.770 0.769 0.769 0.769 0.769 0.769 0.769 0.768 0.768

China
βP 0.525 0.151 0.167 0.183 0.200 0.216 0.233 0.250 0.266 0.283 0.300

(0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)***
αP -0.008 -0.021 -0.023 -0.025 -0.026 -0.028 -0.030 -0.031 -0.033 -0.034 -0.035

(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.928 0.625 0.631 0.637 0.642 0.647 0.653 0.660 0.668 0.676 0.686
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Next, we use the Henriksson and Merton (Henriksson and Merton, 1981) measure to ex-

amine whether or not a pension portfolio could benefit from attaching the target volatility

mechanism to the lifecycle strategy and result in better market timing skill. In other words,

we estimate whether the target volatility strategy (i.e. attaching the target volatility mech-

anism to the lifecycle strategy) could better adjust portfolio asset classes based on market

performance in comparison to the lifecycle strategy. The H&M regression model is shown

as follows:

RP
t − rt = αP +βP · (RM

t − rt)+ γt ·Dt · (RM
t − rt)+ ε

P
t (2.7)

In the H&M regression model, RP
t , rt , αP, and RM

t represent the one-year rolling annualized

return of the pension portfolio, the annual risk-free rate, the portfolio’s alpha, and the one-

year rolling annualized return of the equity market at time t, respectively. Dt is a dummy

variable that is equal to one if the difference RM
t − rt is positive and zero otherwise. A

positive and statistically significant coefficient, γt , suggests that the pension portfolio could

benefit from good market timing skills being embedded in an investment strategy, resulting

in higher portfolio return.

Table 2.7 shows the H&M regression results for the pension portfolio under the lifecycle

strategy and the target volatility strategy.

Looking at the global market, we see that the γt coefficient of the pension portfolio using

the lifecycle strategy is negative and statistically significant. Using the target volatility

strategy, the γt coefficient turns positive under all target volatility scenarios, suggesting

that attaching the target volatility mechanism to the lifecycle strategy improves its market

timing skill. Both the lifecycle strategy and the target volatility strategy show positive and

statistically significant γt in Japan. Nonetheless, the γt of the pension portfolio under the

lifecycle strategy is 0.009, while it is greater than 0.012 when under the target volatility
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strategy (i.e. when the target volatility scenario is 10%;0.50%), which suggests that the

target volatility strategy outperforms the lifecycle strategy with respect to the market timing

skill. In South Korea, the pension portfolio under the two pension investment strategies

results in a negative γt . However, the γt of the pension portfolio when using the target

volatility strategy (i.e. greater than -0.021) is higher than when using the lifecycle strategy

(i.e. -0.051). Finally, in China, the H&M regression shows similar results to the global

market, where the γt is negative and statistically significant under the lifecycle strategy but

turns positive when the target volatility mechanism is attached to the lifecycle strategy,

showing that we could expect a higher portfolio return from embedding a better market

timing skill in the target volatility strategy.

Overall, our model-based analyses suggest that, in contrast to the lifecycle strategy, the

target volatility strategy, which contains an additional target volatility mechanism, could

additionally control portfolio risk and adjust portfolio asset allocation better on the basis

of market performance. These results are consistent with our main analysis findings and,

consequently, we conclude that our results are robust.

35



Table 2.7: Henriksson & Merton (H&M) regression results

The H&M model regresses the excess returns of a pension portfolio on the excess returns of an equity market and a dummy variable, which equals one if the
excess return of the equity market is positive and zero otherwise. In this table, column (1) reports the regression results for the lifecycle strategy in the four
investment regions. Column (2) to (11) report the regression results for the target volatility strategy under each of the target volatility scenarios (i.e., from
10%;0.50% to 19%;0.95%) in the four investment regions. In the regression results, we focus on the coefficient γt . The coefficient αP and the constant term in the
regression model are omitted from this regression output. Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

World
βP 0.756 0.378 0.415 0.449 0.481 0.510 0.538 0.564 0.586 0.608 0.630

(0.006)*** (0.007)*** (0.008)*** (0.009)*** (0.009)*** (0.010)*** (0.011)*** (0.011)*** (0.011)*** (0.012)*** (0.012)***
γt -0.036 0.007 0.007 0.009 0.010 0.012 0.015 0.016 0.017 0.017 0.016

(0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.004)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.884 0.617 0.617 0.617 0.619 0.621 0.623 0.626 0.632 0.639 0.648

Japan
βP 0.513 0.186 0.205 0.223 0.242 0.261 0.280 0.299 0.318 0.336 0.355

(0.006)*** (0.004)*** (0.005)*** (0.005)*** (0.005)*** (0.006)*** (0.006)*** (0.007)*** (0.007)*** (0.007)*** (0.008)***
γt 0.009 0.012 0.013 0.014 0.014 0.015 0.016 0.017 0.018 0.019 0.019

(0.003)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.004)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.795 0.553 0.553 0.553 0.553 0.552 0.553 0.553 0.552 0.553 0.553
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Table 2.7: Henriksson & Merton (H&M) regression results (Continued)

The H&M model regresses the excess returns of a pension portfolio on the excess returns of an equity market and a dummy variable, which equals one if the
excess return of the equity market is positive and zero otherwise. In this table, column (1) reports the regression results for the lifecycle strategy in the four
investment regions. Column (2) to (11) report the regression results for the target volatility strategy under each of the target volatility scenarios (i.e., from
10%;0.50% to 19%;0.95%) in the four investment regions. In the regression results, we focus on the coefficient γt . The coefficient αP and the constant term in the
regression model are omitted from this regression output. Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Lifecycle
strategy

Target volatility strategy

TVS 10%;0.50% 11%;0.55% 12%;0.60% 13%;0.65% 14%;0.70% 15%;0.75% 16%;0.80% 17%;0.85% 18%;0.90% 19%;0.95%

South Korea
βP 0.770 0.247 0.273 0.299 0.325 0.351 0.377 0.404 0.431 0.458 0.485

(0.005)*** (0.003)*** (0.003)*** (0.003)*** (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.005)*** (0.005)*** (0.005)***
γt -0.051 -0.009 -0.010 -0.011 -0.013 -0.014 -0.015 -0.017 -0.018 -0.019 -0.021

(0.002)*** (0.001)*** (0.001)*** (0.001)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)*** (0.002)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.900 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772

China
βP 0.534 0.131 0.146 0.161 0.176 0.191 0.206 0.222 0.239 0.255 0.272

(0.003)*** (0.002)*** (0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.004)*** (0.004)***
γt 0.013 0.030 0.032 0.034 0.036 0.038 0.040 0.041 0.042 0.043 0.043

(0.003)*** (0.002)*** (0.002)*** (0.002)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)*** (0.003)***
n 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957 4957
R2 0.929 0.642 0.647 0.652 0.657 0.661 0.666 0.672 0.679 0.686 0.695
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2.7 Discussion

Pension scholars and practitioners are continuously seeking reliable long-term investment

strategies that can help them keep their promises. In the present study, we examine the

possibility of improving the traditional lifecycle pension investment concept by attaching a

target volatility mechanism to it. Based on our numerical results, we see that a combination

of the lifecycle pension investment strategy and the target volatility strategy outperforms

the lifecycle strategy on its own in terms of portfolio risk control. This could largely be at-

tributed to the flexible asset management concept of the target volatility strategy. A pension

portfolio that operates under a traditional lifecycle strategy often begins with a large por-

tion of risky assets, gradually reducing the amount of risky assets in the pension portfolio

over the course of the pension investment period (Tang and Lin, 2015). This fixed glide-

path mechanism secures the pension portfolio as it moves toward the target date but it also

exposes the portfolio to market risk during the beginning stage of the investment (Pfau,

2010). In other words, we can see the lifecycle strategy as being a time-dependent long-

term investment strategy with a target date constraint. In contrast to the lifecycle strategy,

the target volatility strategy is a performance-driven investment strategy that adjusts the

asset allocation of a pension portfolio on the basis of market volatilities and target volatili-

ties. Thus, although pension portfolios under the target volatility strategy also have a target

date, the embedded asset allocation mechanism is time-independent. This allows the target

volatility strategy to adjust the asset allocation anytime during the pension accumulation

stage, to maintain the portfolio risk at a constant level (Cirelli et al., 2017), and to mitigate

the portfolio downside risk (Benson et al., 2014).

In terms of pension portfolio returns, we see that the combined strategy (i.e. the lifecy-

cle strategy that uses a target volatility overlay) could generate higher returns-in some but

not all target volatility scenarios—over the 20-year pension scheme in comparison to the

lifecycle strategy on its own. As we show in our results, the target volatility strategy out-
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performs the lifecycle strategy in China for all target volatility scenarios with respect to the

risk-adjusted returns but the same strategy shows better performance in Japan and South

Korea only under some but not all target volatility scenarios. This is not surprising because

each market is different and it is possible that the target volatility mechanism is more ef-

fective in certain market contexts than in others. Hence, a detailed analysis that looks for

investment regions in which these investment strategies could be implemented is necessary.

Nonetheless, the benefits of the target volatility strategy also stand out in the following as-

pects. First, unlike the pension portfolio under the lifecycle strategy, which is dominated

by risk-free assets when approaching the target date, the pension portfolio under the target

volatility strategy is able to adjust its asset allocation at different time points during the

entire pension accumulation stage, thus allowing for the possibility of investing in risky as-

sets even when approaching the target date. Second, the target volatility strategy allows for

a certain amount of leverage so that the pension portfolio could benefit from a high-return

equity market when the market conditions are desirable (i.e. when the realized market

volatility is lower than the target volatility). This leverage mechanism is also lacking in the

traditional lifecycle strategy, which allows for maximum 100% risky asset allocation in the

pension portfolio.

Despite the findings presented in this paper, it is also worth mentioning that the study has

several limitations. First, we attempt to examine whether attaching the target volatility

mechanism to the traditional lifecycle pension concept can yield better pension investment

outcomes. Consequently, we select a simple linear lifecycle strategy even though there

are other more sophisticated lifecycle pension strategies and investment vehicles available

in the markets. Second, in order to show the effective asset protection embedded in the

target volatility strategy, we intentionally set up a pension scheme with a 20-year span that

included the 2008 financial crisis and the recent market turbulence of early 2020. As a

result, our analyses derive from historical time-series data. Finally, we consider a pension

portfolio that has a simple asset composition (i.e. equities and bonds), although there are
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more complex financial derivatives available for a pension portfolio.

Given the findings in and limitations of this study, future research could examine the

suitability of combining other dynamic risk management components, such as the mean-

variance asset allocation strategy (Dang et al., 2017) and the liability-based portfolio man-

agement strategy (Crook, 2019) with the classical lifecycle concept. Furthermore, instead

of using historical time-series data to conduct corresponding analyses, a future study could

also investigate forward-looking scenarios. Finally, asset allocation is just one of the factors

that can affect the performance of a pension portfolio. In other words, pension investment

strategies also need to confront other factors, such as longevity risk (Simsek et al., 2018)

and inflation (Tang et al., 2018), which could shape the sustainability of a pension portfolio.

2.8 Conclusion

In this paper, we propose a new pension management investment strategy that combines

a simple lifecycle pension concept with a target volatility mechanism in three investment

regions (i.e. Japan, South Korea, and China) that have the highest predicted old-age de-

pendency ratio. We find that, in contrast to the sole use of the simple lifecycle strategy, the

combined strategy that uses the target volatility mechanism could control portfolio down-

side risks better and generate higher portfolio returns. We also show that the combined

strategy that uses the target volatility overlay could provide more effective pension capital

protection in comparison to the sole use of the traditional lifecycle pension strategy when

facing a sudden market drawdown. Our results are robust and take transaction costs into

consideration. Therefore, this study shows that attaching a target volatility mechanism to

the lifecycle strategy could be an option in pension markets.
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Enhancing Retirement Coverage Using The

Target Volatility Investment Strategy

3.1 Introduction

As population aging becomes a global phenomenon, the problem of optimizing the retire-

ment planning has attracted a lot of attention in financial industry and academic discussion.

According to the World Population Aging 2019 report from the United Nations, approx-

imately 703 million people were aged 65 or older, and this number is projected to reach

1.5 billion by 2050 (United Nation, 2020). Recently, new challenges have raised in the

retirement management domain due to the unprecedented market crisis triggered by the

COVID-19 pandemic (Baker et al., 2020), and a persistent low interest rate environment in

marketplace (Rubio and Yao, 2020). This may lead to a myriad of issues to different retire-

ment investment vehicles since most of the retirement portfolios rely heavily on equities

and bonds to yield a sufficient amount of capital such that the living expenses of retirees

can be covered after retirement.

To date, looking at the pension accumulation stage, various pension strategies have been

proposed by pension practitioners and scholars. For example, the classical lifecycle pen-

sion concept is shown to be an effective and simple pension investment strategy (Fisch and

Turner, 2018), which has been used as the default portfolio investment option in the 401(k)

plans in the United States (Kilgour, 2019; Chan et al., 2017). Moreover, a dedicated ad-

justment to the lifecycle pension concept, such as combining it with a liability-based asset

allocation component (Crook, 2019) or a target volatility mechanism (Bai and Wallbaum,

2020), can also further improve various pension outcomes required by pension investors.
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On the other hand, a significant literature is devoted to improving retirement outcomes

in pension decumulation phase (i.e., when investors retire and start making withdrawals

from their retirement portfolio). A general consensus is that different retirement outcomes

may be achieved by changing the asset allocation (Liu et al., 2019; Louton et al., 2015) or

adjusting the annual withdrawal rate (DeJong Jr et al., 2017; Blanchett, 2017; Clare et al.,

2017). It has been shown that a retirement portfolio with constant asset allocation can

provide attractive portfolio returns (Milevsky et al., 1997; Ho et al., 1994). For example,

a retirement portfolio with a risky asset allocation of between 50% and 75% often yields

a desirable portfolio return (Bengen, 1994). A fixed asset allocation of 60% equities and

40% bonds is shown to be a suitable asset allocation option for retirement portfolio under

different market conditions (Estrada, 2016). In terms of the annual withdrawal rate, which

is another important factor that determines the length of coverage of retirement portfolios,

a 4% constant annual withdrawal rate is shown to be a fruitful annual withdrawal amount

in different market contexts (Bengen, 1994). Nevertheless, all these parameters heavily

depend on market environment and interest rate levels.

In an attempt to control the risk that a retirement portfolio may encounter in volatile market

conditions, portfolio investment strategies with dynamic asset management components,

such as the constant proportion portfolio insurance (CPPI) (Biedova and Steblovskaya,

2020; Temocin et al., 2018; Bernard and Kwak, 2016) and the target volatility concept

(Albeverio et al., 2018), have gained important places in pension markets. Lately, a growing

body of literature has shown that volatility targeting does help reduce downside risks and

add value to retirement investment vehicles over a long-term investment period (Dachraoui,

2018; Perchet et al., 2015). For example, combining a target volatility asset management

component with an existing lifecycle investment strategy may improve portfolio returns and

reduce overall portfolio risks (Bai and Wallbaum, 2020). Also, volatility targeting might

effectively reduce exposure to portfolio tail risk without dragging down portfolio returns

(Hocquard et al., 2013).
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In this paper, we examine whether the target volatility concept can further improve a retire-

ment portfolio in different aspects of the pension decumulation stage. We consider a target

volatility strategy with dynamic target volatility levels linked to interest rates, and we at-

tach the target volatility strategy to retirement portfolios with constant asset allocations as

an additional investment protection layer.

Our analysis is based on numerical simulations. Considering the recent unconventional

negative interest rate policies adopted in the European marketplace and the overall low

interest rate condition worldwide (Wu and Xia, 2020), we choose the suitable financial

model and set up our simulation in a way which allows us to study the performance of

the newly proposed strategy under a zero or a negative interest rate environment. Also,

we evaluate our strategy based on historical time series data extracted from different data

sources.

This paper is organized as follows: section 3.2 introduces the dynamic target volatility

strategy. Section 3.3 and 3.4 discuss our analysis approach on simulated paths and historical

market data, respectively. Section 3.5 and 3.6 present our results. Section 3.7 discusses our

findings and concludes this paper.

3.2 The Dynamic Target Volatility Strategy

Market interest rate is usually a good indicator for the movement of economy since the

central banks usually cut the interest rate to stimulate consumer spending in a declining

economy and raise the interest rate to control inflation in a growing economy (Rochon and

Setterfield, 2008). In this paper, we adopted a target volatility strategy with interest rate

dependent target volatility levels (addressed as dynamic target volatility strategy). Under

the dynamic target volatility strategy, the risky and risk-free asset allocations of a portfolio

are determined as follow.
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Let Tt and Vt denote the interest rate dependent target volatility level and the realized market

volatility at time t, respectively. let L stand for the maximum leverage ratio, and let αt

and βt represent the risky and risk-free asset allocation of the target volatility portfolio,

respectively. The risky and risk-free asset allocations of a target volatility portfolio at time

t are determined as follows:

αt = min{Tt

Vt
;L} (3.1)

βt = 1−αt (3.2)

The target volatility level Tt at time t is determined with respect to the market interest rate.

For example, Albeverio et al. (2018) use the following setting:

Tt =


V T1 i f rt < χ

V T2 i f rt ≥ χ

(3.3)

Here, rt represents the market interest rate at time t and χ is a pre-specified interest rate

trigger, or the interest rate threshold which is used to adjust the target volatility level. The

target volatility level equals V T1 if the market interest rate rt is smaller than the interest rate

trigger χ and V T2 otherwise.

In this study, we extend the setup of Albeverio et al. (2018) according to our needs (see

section 3.3.2).

3.3 Analysis on Simulated Paths

In this paper, we simulate a thirty-year retirement span. At the beginning of the retirement

span, the retiree starts marking annual withdrawals from a retirement portfolio of 1 million

dollars. We simulate 10,000 return paths for the risky and risk-free assets of the benchmark
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portfolio and the target volatility portfolio considered. Then, we compute different risk-

return measurements to compare the performance of the two portfolios.

This section introduces the financial market model, the portfolio setup, the simulation envi-

ronment under which we analyze the performance of the target volatility portfolio and the

benchmark portfolio, and the risk-return measures for the portfolio performance compari-

son.

3.3.1 The financial market model

In this section, we introduce the financial market model we use to simulate the returns

of embedded assets (i.e., equities and bonds) in the benchmark portfolio and the target

volatility portfolio. Specifically, we use the ”Hybrid Heston-Vasiček model” adopted in

the study by Albeverio et al. (2018) to simulate the returns of risky assets. Let r(t) and

σ(t) denote the stochastic annual interest rate and stochastic annual volatility, respectively.

Under the Hybrid Heston-Vasiček model, the risky asset dynamics S(t) is described by the

following stochastic differential equation:

dS(t) = r(t)S(t)dt +σ(t)S(t)dWs(t) (3.4)

where r(t) follows the Vasiček model (Vasicek, 1977) and σ(t) follows the Heston model

(Heston, 1993) as follows:

dr(t) = k(θ − r(t))dt +σrdWr(t) (3.5)

dσ(t)2 = v(β −σ(t)2)dt +σσ σ(t)dWσ (t) (3.6)

In equation (3.5), k stands for the speed of reversion of the interest rate, θ is the long-term

interest rate reversion level, and σr is the volatility of interest rate. The Vasiček model

allows for negative interest rates, which is essential for us to study the performance of our
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newly proposed strategy under a low or a negative interest rate environment. In equation

(3.6), v represents the long-term reversion speed of the squared volatility, β is the long-

term reversion level of the squared volatility, and σσ is the volatility of volatility. The three

Wiener processes Ws(t), Wr(t), and Wσ (t) are assumed to be correlated as follows:

corr(dWσ (t),dWs(t)) = ρσ ,s (3.7)

corr(dWs(t),dWr(t)) = ρs,r (3.8)

corr(dWσ (t),dWr(t)) = ρσ ,r = ρσ ,sρs,r (3.9)

We then use the following differential equation with an interest rate component to describe

the risk-free asset dynamics:

dB(t) = r(t)B(t)dt (3.10)

Following Albeverio et al. (2018), we use the following parameter values documented in

Huynh et al. (2011) to simulate returns of the risky and risk-free assets:

k = 1.25;θ = 0.05;σr = 0.025;v = 1.25;β = 0.04;

σσ = 0.2;ρσ ,s =−0.5;ρs,r = 0.2;ρσ ,r = 0.1;dt = 1/252.

In the main analysis, we begin our simulation using an initial annual interest rate r(0) = 2%

and an initial risky-asset annual volatility σ(0) = 10%,15%,20%,25%, and 30%. Given

the current low interest rate in different marketplaces (Rubio and Yao, 2020), such as the

negative interest rates in the European area, we also change the initial annual interest rate

to r(0) = 0% and compare the results. The goal is to examine the performance of the

benchmark portfolio and target volatility portfolio in a low interest rate environment.
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3.3.2 Portfolio setup

The benchmark portfolio

To examine whether the target volatility strategy might be a suitable asset management

measure when a retirement portfolio enters the pension decumulation phase, we compare

the performance of a target volatility portfolio with that of a benchmark portfolio. Early

studies have suggested that a retirement portfolio with a simple constant asset allocation

can provide attractive portfolio returns (Milevsky et al., 1997; Ho et al., 1994). For exam-

ple, a retirement portfolio with a risky asset allocation of 50% to 75% often shows good

results (Bengen, 1994). Also, a fixed asset allocation of 60% equity and 40% bond can be a

suitable asset allocation strategy for a retirement portfolio under different market conditions

(Estrada, 2016). Thus, we consider a benchmark portfolio with a constant risky/risk-free

asset allocation (i.e., equities/bonds) in a hypothetical thirty-year retirement span. Specif-

ically, we look at five risky/risk-free asset allocation scenarios (i.e., equities/bonds, %):

30/70, 40/60, 50/50, 60/40, and 70/30. We believe that comparing the performance of the

target volatility strategy under different asset allocation scenarios can provide more com-

prehensive results.

The target volatility portfolio

The target volatility portfolio considered is a retirement portfolio that consists of risky as-

sets and risk-free assets. In contrast with the benchmark portfolio, which uses equities

and bonds as risky and risk-free assets, respectively, the risky assets in the target volatil-

ity portfolio are represented by a benchmark portfolio with the constant asset allocations.

The risk-free assets of the target volatility portfolio are local money market instruments

and their returns are represented by the simulated bond returns. In this paper, extending

Albeverio et al. (2018), we adopt a target volatility strategy with dynamic target volatility

levels dependent on market interest rates. Here, we introduce our specific setup for the
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target volatility strategy.

We consider two interest rate triggers (χ1 and χ2) which we use to choose the target volatil-

ity level Tt at time t as follows:

Tt =


V T0 i f χ1 ≤ rt ≤ χ2

V T1 i f rt < χ1

V T2 i f rt > χ2

(3.11)

To determine the initial target volatility level V T0, we first simulate the return paths of the

benchmark portfolio 10,000 times. Then, we compute the average annualized volatilities

of the benchmark portfolios and use them as the values of the initial target volatility level

V T0. The idea is to let both the benchmark portfolio and the target volatility portfolio start

at the same risk level. We choose a higher target volatility level (V T1 = V T0 + 2%) when

the historical interest rate drops below the interest rate trigger χ1 = 0% and a lower target

volatility level (V T2 =V T0−2%) when the historical interest rate increases above the inter-

est rate trigger χ2 = 4%. We choose the 0% interest rate trigger due to the approximately

0% interest rate in the United States and the persistent negative interest rates in the Euro-

pean area over the past several years. Under this setup, the investors could benefit more

from borrowing in a low interest-rate environment and investing in risk-free assets in a high

interest rate environment. Table 3.1 summarizes the values we choose for equation (3.11)

under the five asset allocation scenarios.

Table 3.1: Target volatility levels with corresponding asset allocation scenarios, χ1 = 0%,
χ2 = 4%

Asset allocation scenarios, V T0, % V T1,% V T2, %
equities/bonds, %

30/70 5.84 7.84 3.84
40/60 7.78 9.78 5.78
50/50 9.73 11.73 7.73
60/40 11.67 13.67 9.67
70/30 13.61 15.61 11.61
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Example let us fix the risky/risk-free asset allocations at 50%/50%. The initial target

volatility level of the target volatility portfolio is set at 9.73%. The target volatility level

would be adjusted to 11.73% or 7.73% if the historical interest rate dropped below 0% or

raised above 4%, respectively.

After determining the target volatility level Tt at time t based on the historical interest

rates, we calculate the risky and risk-free asset allocations using equation (3.1) and (3.2)

as follows. We compute the realized market volatility Vt based on the daily returns of

equity market over the past twenty days from t, and we set the maximum leverage ratio

L at 150% to prevent our target volatility portfolio from overexposing to risky assets (Bai

and Wallbaum, 2020). The risky asset allocation of the target volatility portfolio at time

t is determined by the ratio between the target volatility level Tt and the realized market

volatility Vt at time t. Then, the risk-free asset allocation at time t is computed by using one

minus the risky asset allocation at time t. Admittedly, there are different parameter values

for determining the target volatility levels. For example, in Albeverio et al. (2018), the

authors use an interest rate trigger of 3% with the target volatility level adjusted between

10% and 20% or between 40% and 50%. In this paper, we select our parameter values

in line with the current low interest rate environment. A future study may use different

parameter values and compare the results.

3.3.3 Simulation environment

In this section, we introduce the transaction costs, inflation rate, and annual withdrawal rate

we consider for the simulation environment.

Transaction cost

To generate portfolio return while controlling portfolio risk, the target volatility portfo-

lio needs to adjust its asset allocation between risky and risk-free assets on a daily basis.
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Therefore, the transaction costs that occur when this adjustment takes place could have a

significant influence on the target volatility portfolio. When using a trend-following invest-

ment strategy, Hurst et al. (2017) show that there is a negative correlation between market

transaction cost and competitions among market makers, and the transaction costs in equity

market moved down from 34bps to 6bps from 1880 to 2013. Thus, we consider a 20bps

transaction cost, which is the average of the transaction cost between 1880 and 2013. This

is also consistent with the study by Clare et al. (2017), which uses a 20bps transaction cost

when examining the performance of trend-following strategies. A higher transaction cost

would further lower portfolio ending values and provide more conservative estimates. Fu-

ture research may examine the performance of the target volatility portfolio under different

transaction cost scenarios.

Inflation rate

For a long-term retirement income strategy, the likelihood of a portfolio to provide suffi-

cient retirement coverage is related to uncertainties in portfolio performance. Moreover, it

also dependents on changing inflation rates. In general, an increase in inflation rates would

lower the purchasing power of money. Retirees living in regions with higher inflation rates

would require more retirement incomes to maintain the same living standards compared to

those in a region with lower inflation rates. In our simulations with the thirty-year retire-

ment horizon, we set an annual inflation rate at 2%, which is the average annual inflation

rate in the United States between 2015 and 2020.

Annual withdrawal rate

Settling a proper fixed annual withdrawal rate for optimizing retirement portfolio perfor-

mance is a subject that has been discussed extensively in the domain of retirement practice.

The earliest discussion on the annual withdrawal rate of retirement portfolio can be dated

back to the 4% constant rule (Bengen, 1994), which is further confirmed as a suitable
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choice for retirement planning when having a portfolio of greater than 50% equity in asset

allocation (Cooley et al., 2003). Following this path, we evaluate the performance of the

target volatility portfolio and benchmark portfolio under a fixed annual withdrawal rate en-

vironment. Specifically, we use 3.33% (i.e., 1/length of retirement span) as the fixed annual

withdrawal rate. In other words, over the thirty-year retirement span, the retiree makes an

annual withdrawal amount that equals to 3.33% of the initial value at the beginning of the

thirty-year retirement span.

3.3.4 Risk-return measures on simulated paths

Portfolio durability measures

Average length of the retirement coverage. To measure the durability of the two port-

folios considered (i.e., the benchmark portfolio and the target volatility portfolio), we first

compute the average length of the retirement coverage (in years): the average number of

years it takes for each portfolio to run out of capital within the thirty-year retirement span.

Portfolio survival rate. We then show the portfolio survival rate, which is the percentage

of the simulated portfolio paths with positive terminal values. A higher portfolio survival

rate indicates that the retirement portfolio has a higher likelihood to outlive the retiree when

looking at the thirty-year retirement span.

Portfolio risk measures

95% value-at-risk (VAR). We use the 95% VAR of the portfolio terminal values to mea-

sure the portfolio downside risk. Specifically, we order the portfolio terminal values in an

ascending order and use the 95% location to approximate the value of VAR. The 95% VAR

measures the worst 5% portfolio ending values at the end of the thirty-year retirement span.

For example, a 95% VAR of $100,000 suggests that there is a 95% chance that the portfolio

terminal value will be higher than $100,000.
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95% conditional value-at-risk (CVAR). The 95% CVAR is considered as a more conser-

vative measurement for the portfolio tail risk. As an extended risk measurement of the 95%

VAR, it is computed by taking the average of portfolio terminal values below the 5% cutoff

point.

Portfolio return measure

Average annualized return. To evaluate the performance of the target volatility portfolio

and the benchmark portfolio, we calculate the average annualized return of the portfolio

over the retirement span. For the 10,000 simulations, we compute the annualized returns

for each simulated path and then take the average of the annualized returns.

3.4 Analysis on Historical Data

To further evaluate the performance of the target volatility portfolio and the benchmark

portfolio, we repeat our analysis on the historical time series data of the European market

since the European region shows negative interest rates over the past several years. In

this section, we introduce the historical market data used for analysis and the risk-return

measurements we calculate to compare the performance of the benchmark portfolio and

the target volatility portfolio.

3.4.1 Historical Market Data

We use the STOXX Europe 600 Index (Caporin et al., 2021) and the Bloomberg Barclays

Euro Aggregate Bond Index (Matsui, 2020) to represent the equity returns and bond returns,

respectively. We use the 3-month Internal Bank Rate for Euro Area as a proxy of the interest

rate of the European area, and we extract the longest available historical time series from

the Bloomberg database and the Federal Reserve Economic Data (FRED) database until

the time of our analysis. Subsequently, we end up with approximately 24 years of daily
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data from 06.30.1998 to 10.21.2021.

3.4.2 Risk-return measures on historical data

Portfolio durability measures

Average length of the retirement coverage. Over the 24-year retirement span, we com-

pute the number of years the two portfolios run out of capital.

Recall that for the analysis on the 10,000 simulated paths, we compute the portfolio sur-

vival rate (the percentage of the simulated portfolio paths with positive terminal values).

Since the historical analysis is based on a single historical return path, we exclude this

measurement from the historical analysis.

Portfolio risk measures

95% value-at-risk (VAR). For the historical analysis, we compute the 95% VAR based on

the one-year rolling return of the portfolio. Specifically, we compute the annual return of

the portfolio starting from the first financial year. Then we compute the one-year rolling

return by rolling the annual return on a daily basis for the 24-year retirement span. We order

the one-year rolling returns in an ascending order and use the 95% location to approximate

the value of VAR. As a result, the 95% VAR measures the worst 5% portfolio return over

an one-year investment window.

95% conditional value-at-risk (CVAR). The 95% CVAR is computed by taking the aver-

age of the one-year rolling return below the 5% cutoff point.

Portfolio return measure

Average annual return. Regarding the portfolio return measure, we compute the annual

returns of the benchmark portfolio and the target volatility portfolio for each financial year
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within the 24-year retirement span. Then, we take the average of the annual returns as the

average annual return.

3.5 Numerical Results on Simulated Paths

3.5.1 Initial annual interest rate r(0) = 2%

We first report the results of our numerical simulations with the initial annual interest rate

r(0) = 2% (see section 3.3.1). The initial risky asset annual volatility σ(0) varies between

10% and 30%. Recall that for each combination of initial interest rate r(0) and initial risky

asset volatility σ(0), we simulated 10,000 paths according to the market model described

in section 3.3.1.

Table 3.2 presents the first durability measure: the average length of the retirement cover-

age (in years) of the benchmark portfolio and the target volatility portfolio. In general, for

all the asset allocation scenarios considered, the target volatility portfolio provides a longer

period of effective retirement coverage in contrast with the benchmark portfolio. For ex-

ample, when the risky/risk-free asset allocations are 70%/30% and the initial risky asset

annual volatility σ(0) = 30%, the target volatility portfolio offers approximately 2 years

longer retirement coverage than the benchmark portfolio.

Table 3.3 presents the results of the second portfolio durability measure: portfolio survival

rate (i.e., the percentage of simulations with a positive portfolio terminal value). The most

pronounced difference regarding the portfolio survival rate can be seen when the risky/risk-

free asset allocations are 70%/30% and the initial risky asset annual volatility σ(0) = 30%,

where the target volatility portfolio improves the portfolio survival rate by around 23% in

contrast with the benchmark portfolio. The differences in the portfolio survival rate (TVP -

BP) are all positive, suggesting that the target volatility strategy can improve the portfolio

survival rate by 2.88% to 23.28% for the five asset allocation scenarios considered.
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Table 3.2: The length of the retirement coverage (in years), initial annual interest rate
r(0) = 2%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP)
Equities/bonds, %
30/70 29.92 29.91 29.90 29.89 29.87
40/60 29.67 29.65 29.62 29.59 29.54
50/50 29.24 29.21 29.16 29.09 29.01
60/40 28.67 28.63 28.55 28.47 28.36
70/30 28.03 27.97 27.88 27.77 27.63

Target volatility portfolio (TVP)
Equities/bonds, %
30/70 30.00 30.00 30.00 30.00 30.00
40/60 30.00 30.00 30.00 30.00 30.00
50/50 29.99 29.99 30.00 30.00 30.00
60/40 29.88 29.90 29.92 29.93 29.95
70/30 29.46 29.52 29.58 29.64 29.69

Difference (TVP - BP)
Equities/bonds, %
30/70 0.08 0.09 0.10 0.11 0.13
40/60 0.33 0.35 0.38 0.41 0.46
50/50 0.75 0.78 0.84 0.90 0.99
60/40 1.21 1.27 1.36 1.46 1.59
70/30 1.43 1.55 1.70 1.88 2.06

Table 3.4 shows the 95% VAR of the benchmark portfolio and target volatility portfolio

based on portfolio terminal values. Looking at the hypothetical thirty-year retirement span,

the target volatility portfolio shows a significantly higher 95% VAR (between -144.48 and

456.10 thousand dollars) in contrast with the benchmark portfolio (between -462.70 and

63.71 thousand dollars), suggesting that the target volatility portfolio can better control the

portfolio downside risk.

We see similar pattern regarding the 95% CVAR presented in Table 3.5. Compared to

the benchmark portfolio with a 95% CVAR ranges between -637.21 and -35.60 thousand

dollars, the target volatility portfolio shows a 95% CVAR between -254.24 and 403.67

thousand dollars, respectively.

Table 3.6 presents the average annualized return of benchmark portfolio and target volatil-

ity portfolio based on the 10,000 simulations. As shown in the table, the average annualized
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Table 3.3: Portfolio survival rate, %. Initial annual interest rate r(0) = 2%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
Equities/bonds, %
30/70 97.12 96.93 96.77 96.53 95.98
40/60 91.60 91.16 90.77 90.10 89.45
50/50 84.62 84.19 83.44 82.56 81.68
60/40 77.43 77.96 76.54 75.96 74.99
70/30 71.35 70.96 70.32 69.61 68.54

Target volatility portfolio (TVP)
Equities/bonds, %
30/70 100.00 100.00 100.00 100.00 100.00
40/60 100.00 100.00 100.00 100.00 100.00
50/50 99.56 99.70 99.85 99.89 99.93
60/40 96.12 96.56 96.99 97.49 97.98
70/30 87.92 88.86 89.99 90.94 91.82

Difference (TVP - BP)
Equities/bonds, %
30/70 2.88 3.07 3.23 3.47 4.02
40/60 8.40 8.84 9.23 9.90 10.55
50/50 14.94 15.51 16.41 17.33 18.25
60/40 18.69 19.50 20.45 21.53 22.99
70/30 16.57 17.90 19.67 21.33 23.28

Table 3.4: Portfolio 95% VAR (in thousand dollars). Initial annual interest rate r(0) = 2%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP)
Equities/bonds, %
30/70 63.71 55.61 47.27 39.86 27.19
40/60 -81.41 -90.24 -98.16 -108.70 -124.22
50/50 -200.04 -210.77 -221.55 -235.75 -251.92
60/40 -308.56 -316.04 -329.16 -343.65 -363.60
70/30 -400.78 -407.62 -423.40 -441.88 -462.70

Target volatility portfolio (TVP)
Equities/bonds, %
30/70 444.10 447.79 450.51 453.66 456.10
40/60 346.41 354.33 361.89 368.04 373.80
50/50 198.10 210.43 223.50 235.43 247.37
60/40 27.24 42.29 59.72 76.89 94.25
70/30 -144.48 -129.11 -112.15 -93.11 -73.28

Difference (TVP - BP)
Equities/bonds, %
30/70 380.39 392.18 403.23 413.80 428.91
40/60 427.82 444.57 460.05 476.74 498.01
50/50 398.14 421.20 445.05 471.19 499.29
60/40 335.79 358.33 388.88 420.54 457.85
70/30 256.30 278.51 311.25 348.77 389.43
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Table 3.5: Portfolio 95% CVAR (in thousand dollars). Initial annual interest rate
r(0) = 2%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP)
Equities/bonds, %
30/70 -35.60 -41.33 -49.34 -60.05 -73.04
40/60 -185.58 -192.79 -202.92 -216.33 -232.70
50/50 -315.71 -324.78 -337.59 -354.10 -373.96
60/40 -435.06 -446.59 -462.26 -481.26 -504.40
70/30 -553.65 -567.08 -585.69 -609.55 -637.21

Target volatility portfolio (TVP)
Equities/bonds, %
30/70 390.17 394.01 397.46 400.67 403.67
40/60 277.40 285.89 294.35 302.45 310.15
50/50 114.63 127.38 141.25 154.87 167.89
60/40 -69.28 -53.53 -35.05 -16.42 1.56
70/30 -254.24 -236.92 -214.91 -192.00 -169.63

Difference (TVP - BP)
Equities/bonds, %
30/70 425.77 435.34 446.80 460.72 476.71
40/60 462.98 478.68 497.26 518.78 542.86
50/50 430.34 452.16 478.84 508.97 541.85
60/40 365.78 393.06 427.21 464.85 505.96
70/30 299.41 330.16 370.77 417.55 467.58

Table 3.6: Average annualized return, %. Initial annual interest rate r(0) = 2%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP)
Equities/bonds, %
30/70 4.445 4.445 4.445 4.446 4.446
40/60 4.463 4.463 4.464 4.464 4.465
50/50 4.482 4.483 4.484 4.484 4.485
60/40 4.503 4.504 4.505 4.506 4.506
70/30 4.524 4.526 4.527 4.528 4.529

Target volatility portfolio (TVP)
Equities/bonds, %
30/70 4.383 4.388 4.391 4.393 4.395
40/60 4.384 4.389 4.393 4.396 4.397
50/50 4.392 4.395 4.399 4.402 4.404
60/40 4.415 4.407 4.410 4.412 4.414
70/30 4.458 4.430 4.427 4.429 4.430

Difference (TVP - BP)
Equities/bonds, %
30/70 -0.061 -0.057 -0.054 -0.052 -0.051
40/60 -0.079 -0.074 -0.071 -0.069 -0.067
50/50 -0.090 -0.088 -0.085 -0.083 -0.081
60/40 -0.088 -0.097 -0.095 -0.093 -0.092
70/30 -0.066 -0.096 -0.100 -0.101 -0.099
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return of the benchmark portfolio are slightly higher than that of the target volatility port-

folio under all the asset allocation scenarios studied. For example, the target volatility

portfolio shows an 0.101% lower average annualized return in contrast with the benchmark

portfolio when the risky/risk-free asset allocations are 70%/30% and the initial risky asset

annual volatility σ(0) = 25%. This is also the most significant difference regarding the

average annualized return between the target volatility portfolio and the benchmark portfo-

lio in our analysis. As we will discuss in section 3.6, this difference regarding the average

annualized return should not be a barrier that shies away the benefits of the target volatility

portfolio.

3.5.2 Initial annual interest rate r(0) = 0%

Over the past several years, we see that the negative interest rate policy has been used to

stimulate economic growth in the European area. For example, the most recent 3-month

London Interbank Offered Rate (LIBOR) is around -0.57% based on data from the Federal

Reserve Economic Data (FRED) database. This unconventional measure casts new doubt

on the investment portfolios that rely on risk-free assets such as bonds. Therefore, studying

the performance of a long-term investment portfolio under an zero or a negative interest rate

environment is necessary. Here, we repeat our simulations with an initial annual interest

r(0) = 0%. Since we change the initial annual interest rate to a lower level, we also update

the interest rate triggers to -2% and 2% (i.e., χ1 = −2% and χ2 = 2%) for choosing the

target volatility level.

Table 3.7 presents the summary of the quantitative comparison on the portfolio durability,

risk, and return measures when the initial annual interest rate r(0) = 0%. Comprehensive

results based on the initial interest rate r(0) = 0% can be found in Appendix A for Chapter

3 in the end of this chapter. Here, we see similar tendencies to the results from the initial

annual interest rate r(0) = 2% where the target volatility portfolio provides more durable
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Table 3.7: Quantitative comparison on the portfolio durability, risk, and return measures:
the target volatility portfolio measures minus the benchmark portfolio measures (TVP -
BP). Initial annual interest rate r(0) = 0%

σ(0),% 10 15 20 25 30

Length of retirement coverage (in years)
Equities/bonds, %
30/70 0.10 0.11 0.12 0.13 0.15
40/60 0.38 0.40 0.43 0.47 0.51
50/50 0.82 0.86 0.91 0.99 1.07
60/40 1.27 1.34 1.44 1.55 1.68
70/30 1.47 1.60 1.76 1.94 2.14

Portfolio survival rate, %
Equities/bonds, %
30/70 3.51 3.59 3.81 4.22 4.62
40/60 9.38 9.80 10.30 10.85 11.55
50/50 16.19 16.73 17.60 18.49 19.32
60/40 18.83 19.93 21.18 22.34 23.76
70/30 16.76 18.13 19.63 21.48 23.49

95% VAR (in thousand dollars)
Equities/bonds, %
30/70 371.98 384.16 394.75 406.17 418.79
40/60 418.37 433.15 450.24 467.54 487.45
50/50 388.39 412.86 437.19 461.77 488.90
60/40 326.44 349.80 380.15 413.52 448.25
70/30 250.34 272.74 308.36 346.41 384.88

95% CVAR (in thousand dollars)
Equities/bonds, %
30/70 416.54 426.05 437.39 451.25 467.11
40/60 453.46 469.14 487.74 509.15 533.06
50/50 422.52 444.45 471.10 501.13 533.83
60/40 360.61 388.36 422.27 459.94 501.18
70/30 296.73 328.64 369.37 416.03 465.97

Average annualized return, %
Equities/bonds, %
30/70 -0.06 -0.055 -0.052 -0.050 -0.049
40/60 -0.077 -0.072 -0.068 -0.066 -0.065
50/50 -0.088 -0.086 -0.082 -0.080 -0.078
60/40 -0.089 -0.095 -0.092 -0.090 -0.089
70/30 -0.073 -0.095 -0.098 -0.097 -0.096
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retirement coverage, lower downside risk, but lower average portfolio returns in contrast

with the benchmark portfolio. Another important pattern we find is that the difference

between the target volatility portfolio and the benchmark portfolio regarding the two dura-

bility measurements are more pronounced when the initial annual interest rate r(0) = 0%

than that when the initial annual interest rate r(0) = 2%. Let us fix the risky/risk-free asset

allocations to 50%/50% and the initial risky asset annual volatility σ = 20%. The target

volatility portfolio provides a 0.91 years longer retirement coverage compared to the bench-

mark portfolio when the initial annual interest rate is r(0)= 0% in contrast with an extended

retirement coverage of 0.84 years when the initial annual interest rate is r(0) = 2%. Under

the same risky/risk-free asset allocations and initial risky asset annual volatility, the target

volatility can improve the portfolio survival rate by 17.60% and 16.41% when the initial

annual interest rates r(0) = 0% and r(0) = 2%, respectively. This finding provides evi-

dence that the benefits of target volatility strategy is even more significant under the zero

and the negative interest rate environment.

3.6 Numerical Results on Historical Data

In Table 3.8, we provide a summary for the portfolio durability, risk, and return measure-

ments based on historical data. Regarding the length of retirement coverage, we see that

both portfolios are capable of providing a full 24-year retirement coverage when the risky

asset allocation ranges from 30% to 70%. Nonetheless, when the risky/risk-free asset al-

locations are 70%/30%, the target volatility portfolio offers 1 additional year of retirement

coverage in contrast with the benchmark portfolio.

Regarding the 95% VAR and CVAR based on the one-year rolling return, the most sig-

nificant difference regarding the 95% VAR can be found when the risky/risk-free asset

allocations are 50%/50% where the target volatility portfolio has 6.15% higher 95% VAR

than the benchmark portfolio. We see similar results for the 95% CVAR. The target volatil-
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Table 3.8: The portfolio durability, risk, and return measures from historical analysis

Benchmark port-
folio (BP)

Target volatility
portfolio (TVP)

Difference (TVP -
BP)

Length of retirement coverage (in years)
Equities/bonds, %
30/70 24 24 0
40/60 24 24 0
50/50 24 24 0
60/40 24 24 0
70/30 23 24 1

95% VAR, %
Equities/bonds, %
30/70 -5.03 -1.76 3.27
40/60 -8.54 -3.66 4.88
50/50 -12.19 -6.03 6.15
60/40 -15.57 -9.79 5.78
70/30 -18.82 -14.23 4.59

95% CVAR, %
Equities/bonds, %
30/70 -8.69 -3.06 5.63
40/60 -12.85 -5.09 7.77
50/50 -16.94 -7.83 9.11
60/40 -20.87 -11.53 9.35
70/30 -24.64 -16.66 7.97

Average annual return, %
Equities/bonds, %
30/70 4.34 3.47 -0.87
40/60 4.35 3.17 -1.18
50/50 4.40 3.09 -1.31
60/40 4.49 3.29 -1.20
70/30 4.62 3.61 -1.01

ity portfolio outperforms the benchmark portfolio by 9.11% and 9.35% regarding the 95%

CVAR when the risky/risk-free asset allocations are 50%/50% and 60%/40%, respectively.

Results for the return measurement: average annual returns are similar to those from the

simulation approach. The target volatility portfolio underperforms the benchmark portfolio

by 0.87% to 1.31% for the five risky/risk-free asset allocation scenarios studied in this

paper.

We do not report the portfolio survival rate (the percentage of simulated paths with positive

terminal values), since this part of analysis is based on a single historical return path.
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3.7 Discussion and Conclusion

In this paper, we use the target volatility strategy to enhance the retirement coverage of

conventional retirement portfolios with constant risky/risk-free asset allocations. We con-

sider a dynamic target volatility strategy under which the target volatility levels are linked

to market interest rates. We then evaluate the performance of the newly proposed strategy

using both a simulation approach over a 30-year retirement span and a historical analysis

approach under a 24-year retirement span.

Using the simulated data for low interest rate market environments (initial annual interest

rate r(0) = 2% and r(0) = 0%), we find that the target volatility portfolio can enhance the

length of the retirement coverage by more than 2 years and improve the portfolio survival

rate by more than 20% compared to the benchmark portfolio with constant asset alloca-

tions. We find similar pattern on historical market data where the target volatility portfolio

can provide an additional year of retirement coverage compared to the benchmark portfo-

lio. This finding is rather important considering the low interest rate market environment

globally and the persistent negative interest rates in the European area.

On both simulated data and historical market data, our numerical results regarding the

95% VAR and CVAR suggest that the target volatility portfolio can better control portfolio

downside risks compared to the benchmark portfolio.

Our numerical results also show that the target volatility portfolio provides lower average

annualized returns compared to the benchmark portfolio. This finding can be attributed

to the asset classes of the target volatility portfolio. Recall that in our construction of the

portfolio, the benchmark portfolio is used as a risky asset. Subsequently, the overall equity

allocation of the target volatility portfolio is lower than that of the benchmark portfolio.

Nonetheless, the lower total portfolio return of the target volatility portfolio should not be

an obstacle that shies away the benefits of the target volatility strategy. For example, based
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on the results from our simulation approach (reported in Table 6), the most significant

difference on the average annualized return is -0.101% when the risky/risk-free asset allo-

cations in the benchmark portfolio are 70%/30% and the initial risky asset annual volatility

σ(0) = 25%. Under the same asset allocation and risky asset annual volatility scenario, the

target volatility portfolio improves the length of retirement coverage by 1.88 years and the

portfolio survival rate by 21.33%. Thus, the negative difference in the average annualized

return is marginal and may not significantly affect the quality of the retirement coverage

for retirees.

Several reasons help explain why the target volatility portfolio has more potential enhanc-

ing the retirement coverage compared to a conventional retirement portfolio. First, the

target volatility strategy is a dynamic asset management strategy that adjusts the asset allo-

cation of a portfolio periodically. When the market risk is above the target volatility level,

the target volatility portfolio allocates more capital to risk-free assets and vice versa. This

allows the target volatility portfolio to control the portfolio risk under the volatile market

conditions. Second, one important mechanism in the dynamic target volatility strategy is

that it increases (decreases) the target volatility level when the interest rate drops below

(increases above) the specified threshold. In other words, the target volatility portfolio

may allocate more capital into the risky asset by increasing its target volatility level when

the market interest rate decreases. This mechanism allows investors to benefit more from

borrowing in a zero or a negative interest rate environment.

In this paper, we focus on using the dynamic target volatility strategy to improve the con-

ventional retirement plans with simple asset allocations (equities and bonds) in the pension

decumulation stage. In a future work, we plan to study using the target volatility investment

concept to improve a pension plan with more complex asset allocations (e.g., the constant

proportion portfolio insurance (CPPI) with a minimum return guarantee, refer to Biedova

and Steblovskaya (2020) for details). Following the dynamic target volatility strategy ex-
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amined in this paper, another important subject might be studying the optimal interest rate

thresholds for the target volatility strategy to derive desirable retirement outcomes. More-

over, since we consider a fixed retirement span, how to mitigate the longevity risk using the

target volatility investment concept may also merit further exploration.
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Reducing Transaction Costs: The Optimal

Rebalancing Boundary For Target Volatility

Strategy In Different Market Conditions

4.1 Introduction

Transaction costs are costs that arise when making business decisions (Kissell, 2006). The

target volatility strategy is an asset management concept which aims at maintaining portfo-

lio risk in volatile market conditions (Albeverio et al., 2013, 2018, 2019). This is achieved

by adjusting the asset allocation of a portfolio on a regular basis. Thus, we define transac-

tion costs as the costs accumulated when the target volatility strategy adjusts its risky and

risk-free asset allocation over an investment horizon.

Transaction costs might affect the performance of an investment strategy from two different

aspects. First, for an asset management strategy embedded with a dynamic asset allocation

mechanism, transaction costs may lower portfolio returns directly (Jana et al., 2009). Sec-

ond, the presence of high transaction costs might make investors to switch from an active

asset reallocation strategy (e.g., target volatility strategy) to a passive asset reallocation

strategy (e.g., a constant asset allocation strategy) (Rowland, 1999). Moreover, looking at

cross-country portfolio investments, markets where transaction costs are low often attract

more investments than markets where transaction costs are high (Thapa and Poshakwale,

2010). Thus, how to reduce the deleterious effect of transaction cost on portfolio return is

an important step to achieve desirable portfolio outcomes.

To address the influence of transaction costs on asset management strategies, some studies
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have incorporated transaction costs in an attempt to further improve an existing portfolio

optimization model (see Yoshimoto (1996); Konno and Wijayanayake (2001); Atkinson

and Mokkhavesa (2004); Babazadeh and Esfahanipour (2019) for examples). Others add

transaction costs as a crucial factor when analyzing asset management strategies and mar-

ket risks (e.g., Li et al. (2019); Zakamulin (2019)). In this paper, we attempted to reduce

the transaction cost that a target volatility strategy may encounter by adding a rebalancing

boundary to its volatility target asset allocation mechanism. To do so, we first proposed

a constraint optimization algorithm where we identified the optimal rebalancing bound-

ary level that maximizes the portfolio return measure (Omega ratio) while controls its risk

measure (mean volatility deviation) under a given threshold. We implement the optimiza-

tion algorithm under two different simulation environment: 1) the stylized Black-Scholes

environment where market return and market volatility are assumed at a constant level; 2)

the bootstrapped environment where market returns are randomly sampled based on real

historical data. Then, we evaluate the performance of the target volatility portfolio with

the optimal rebalancing boundary (called Optimized Portfolio E) in contrast with a tradi-

tional target volatility portfolio without such rebalancing boundaries (called Portfolio S)

by conducting comparative analysis under different market scenarios. To the best of our

knowledge, our paper is the first attempt to address the problem of minimizing transaction

costs in the context of target volatility strategies.

The rest of this paper is organized as follows: section 4.2 introduces the asset allocation

mechanism of Portfolio S and Portfolio E. In section 4.3, we present the risk and the return

measurements to formulate the constraint optimization problem. Section 4.4 introduces

the numerical optimization algorithm. Section 4.5 and 4.6 present the implementation of

the optimization algorithm within the Black-Scholes environment and the bootstrapped

environment, respectively. In section 4.7, we evaluate the performance of Portfolio S and

Optimized Portfolio E under different market scenarios. Section 4.8 concludes this paper.
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4.2 Target Volatility Strategies

We consider two target volatility portfolios: a benchmark target volatility portfolio (Port-

folio S) and a target volatility portfolio with rebalancing boundaries (Portfolio E). Both

Portfolio S and Portfolio E contain a risky asset (represented by equities) and a risk-free

asset (represented by bonds).

4.2.1 Benchmark Target Volatility Portfolio S

Let T denote the target volatility level, L denote the maximum leverage ratio, and Vt repre-

sent the realized annualized volatility of a risky asset at time t. The risky and risk-free asset

allocations (αt and βt , respectively) of a benchmark target volatility Portfolio S at time t

are defined as follows:

αt = min{T
Vt

;L} (4.1)

βt = 1−αt (4.2)

4.2.2 The Target Volatility Portfolio E with Rebalancing Boundaries

Let us denote by φ a rebalancing boundary which we will add to the benchmark portfolio

rebalancing protocol. The target volatility portfolio E with the rebalancing boundary φ

only adjusts its asset allocation when the ratio T
Vt

deviates from the ratio T
Vt−1

in absolute

value by at least φ :

αt =


min{ T

Vt
;L}, i f | TVt

− T
Vt−1
|> φ

αt−1 i f | TVt
− T

Vt−1
| ≤ φ

(4.3)

βt = 1−αt . (4.4)
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For example, let us consider target volatility Portfolios S and E based on the same risky and

risk-free assets with the following parameters: both portfolios have 12% target volatility

level (T = 0.12) and 150% maximum leverage ratio (L = 1.5). Portfolio E has a rebalanc-

ing boundary of 4% (φ = 0.04). On the first trading day, the realized annual risky asset

volatility was 20% (Vt = 0.20).

α1 = min{0.12
0.20

;1.50}= 0.60

β1 = 1−0.60 = 0.40

Both target volatility portfolios would allocate 60% of the capital into risky assets and the

remaining 40% into risk-free assets. On the next trading day, suppose the realized annual

risky asset volatility changed to 19% (Vt+1 = 0.19).

α2 = min{0.12
0.19

;1.50}= 0.6316

β2 = 1−0.6316 = 0.3684

The benchmark Portfolio S would allocate 63.16% of the capital into the risky asset and

the remaining 36.84% into the risk-free asset.

The target volatility Portfolio E with a 4% rebalancing boundary would maintain the same

asset allocation as the one on the prior trading day (i.e., 60% risky assets and 40% risk-free

assets) until the ratio of the target volatility to the realized risky asset volatility exceeded

60%+4% = 64% or dropped below 60%−4% = 56%.

On the third trading day, suppose the realized annual risky asset volatility level changed to
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18%.

α3 = min{0.12
0.18

;1.50}= 0.6667

β3 = 1−0.6667 = 0.3333

Then, both portfolios would allocate 66.67% of the capital into risky assets and the remain-

ing 33.33% into risk-free assets since the ratio of the target volatility to the realized risky

asset volatility exceeded the upper limit of the rebalancing boundary (i.e., 64%).

This mechanism allows us to save some transaction costs as will be illustrated in the next

sections.

Figure 4.1 shows a comparison of the asset allocation with and without a 3% rebalancing

boundary. As shown in the highlighted section, the rebalancing boundary allows the target

Figure 4.1: An illustration of asset allocation with rebalancing boundary

volatility portfolio to maintain the asset allocation at a constant level over some investment

timeframe while the portfolio without the rebalancing boundary adjusts its asset allocation

on a daily basis.
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4.3 Portfolio performance measures

In this section, we introduce the portfolio performance measures that will be used for our

proposed numerical optimization algorithm.

4.3.1 The risk measure

As a risk measure of a portfolio, we will use the average volatility deviation from the target

volatility T . More specifically. Let us consider an investment period [0,τ]. We will split

it into n subintervals [tk, tk+1), k = 0, . . . ,n− 1, t0 = 0, tn = τ . Denote by V S
tk and V E,φ

tk

the annualized portfolio volatility of Portfolio S and Portfolio E, respectively, at time tk.

Here φ is a rebalancing boundary for Portfolio E. Further, denote by DS
tk (resp. DE,φ

tk ) the

volatility deviation from the target volatility T for Portfolio S (resp. Portfolio E) at time tk

k = 1, . . . ,n:

DS
tk = max(V S

tk −T,0) (4.5)

DE,φ
tk = max(V E,φ

tk −T,0) (4.6)

Then the average volatility deviation from the target volatility T for portfolios S and E is

defined as follows:

DS =
1
n

n

∑
k=1

DS
tk (4.7)

DE,φ =
1
n

n

∑
k=1

DE,φ
tk (4.8)
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4.3.2 The return measure

We use the Omega ratio (Keating and Shadwick, 2002) as the return measure of a portfolio.

Let X be a portfolio percentage return over a certain period of time. Suppose X has the

cumulative probability distribution function F . Denote by a a pre-specified loss threshold.

Then the Omega ratio is defined as follows:

ΩX(a) =
∫

∞

a [1−F(x)]dx∫ a
−∞

F(x)dx
(4.9)

Alternatively, the Omega ratio can be computed as a ratio between the expected return

above a given threshold and the expected loss below a given threshold (Kazemi, 2012) as

follows:

ΩX(a) =
E[max(X−a,0)]
E[max(a−X ,0)]

. (4.10)

Let XS (resp. XE ) denote the Portfolio S (resp. Portfolio E) percentage return over the

investment period [0,τ]:

XS =
PS

τ −PS
0

PS
0

(4.11)

XE =
PE

τ −PE
0

PE
0

, (4.12)

where PS
t (resp. PE

t ) stands for the Portfolio S (resp. Portfolio E) value at time t. We will

denote the Omega ratio (with the threshold a) of the benchmark Portfolio S by ΩS(a). Let

φ be the rebalancing boundary of Portfolio E. We will denote the Omega ratio (with the

threshold a) of Portfolio E with the rebalancing boundary φ by ΩE,φ (a).

Notice that both ΩS(a) and ΩE,φ (a) take into account transaction costs.
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4.4 Portfolio optimization problem and numerical opti-

mization algorithm

In this section, we propose a numerical optimization algorithm which allows an investor

to chose the best rebalancing boundary for Portfolio E according to an investor-relevant

optimization criterion.

4.4.1 Optimization problem formulation

Over an investment period [0,τ], let us consider a benchmark target volatility Portfolio S

with parameters T and L as in Section 4.2 and Portfolio E based on the same risky and risk

free assets as Portfolio S and with the same parameters T and L. Let A denote a preliminary

set of rebalancing boundaries for Portfolio E and let a denote a pre-specified loss threshold.

We also specify the transaction costs arrangements.

The constrained optimization problem is formulated as follows:

Maximize ΩE,φ (a) (4.13)

sub ject to DE,φ ≤ DS (4.14)

Over φ ∈ A

4.4.2 Numerical optimization algorithm

We propose a numerical optimization algorithm to solve the above optimization problem.

Input parameters: [0,τ], T , L, a, set A, transaction costs level(s).

1. Using historical data, simulate 10,000 risky asset paths over the future investment

period [0,τ];
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2. Simulate the performance of Portfolio S and Portfolio E (for each φ in A) on each

risky asset path including transaction costs;

3. Estimate the Portfolio S volatility deviation DS and the Portfolio E volatility devia-

tion DE,φ for each φ ∈ A by averaging the corresponding volatility deviations over

simulated paths.

4. Determine the admissible set of rebalancing boundaries B ⊂ A such that for each

φ ∈ B, DE,φ ≤ DS.

5. For each rebalancing boundary level φ ∈ B, calculate the Omega ratio ΩE,φ (a) using

the average returns above and below the threshold a over all simulated paths (includ-

ing transaction costs).

6. Find the optimal rebalancing boundary level φ∗ that maximizes ΩE,φ (a).

As an attempt to control portfolio risk, the accumulated transaction cost from adjusting

the risky and risk-free allocations of the target volatility portfolio might be a crucial factor

affecting portfolio returns. Thus, we follow Di Persio et al. (2021) and use volatility-linked

transaction costs for our analysis as follows:

Table 4.1: Market volatility levels and transaction costs

Market volatility level Transaction cost

Below 10% 10 basis points (bps)
Between 10% to 30% 20 basis points (bps)
More than 30% 50 basis points (bps)

73



4.5 Illustrative numerical experiments within the Black-

Scholes Environment

4.5.1 Financial model and parameter values for simulation

In our stylized environment, the market follows the Black-Scholes model. In other words,

we assume that the risky asset dynamics is described as follows:

dSt

St
= µdt +σdWt , (4.15)

where µ and σ denote the expected annual return and the annual volatility of the risky

asset, respectively. Wt is the standard Wiener process. The risk-free asset (bond) grows at

a constant annual rate r.

We consider the following parameter input values: µ = 0.07 and σ = 0.20,0.30,0.40, and

we use a constant annual interest rate r = 0.02.

4.5.2 Portfolio setup

For our simulations we use the following parameters: τ = 30, T = 0.12, L = 1.50, r =

0.02, a = 0,0.01,0.02,0.03,0.04, A = {0.005,0.01,0.015,0.02,0.025}. We estimate the

annualized market volatility Vt daily using the standard deviations of the daily returns over

the past 20 days before t. We rebalance Portfolio S daily and Portfolio E according to the

rule described in Section 4.2.2 using the appropriate rebalancing boundary.

4.5.3 Numerical results from the Black-Scholes environment

In this section, we present the results of our numerical simulations in the Black-Scholes

market.
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Admissible set of rebalancing boundaries

Table 4.2 presents the average volatility deviations over 10,000 simulated risky asset paths

of Portfolio S and Portfolio E for every rebalancing boundary φ ∈ A. Column 2 (Portfolio

S) reports the mean volatility deviation of Portfolio S (DS). Column 3 to 7 report the

percentage of the mean volatility deviation of Portfolio E (for each φ ∈ B) in relation to

Portfolio S. Recall (see (4.14)) that a rebalancing boundary level φ is admissible if the

Table 4.2: Average volatility deviations of Portfolio S and Portfolio E.

In this table, we report the mean volatility deviation of portfolio S, DS, in column (2). The mean volatility
deviations of portfolio E are reported as percentages of DS from column (3) to column (7).

(1) (2) (3) (4) (5) (6) (7)

Portfolio S Portfolio E
φ ,% 0.50 1.00 1.50 2.00 2.50

σ = 0.20
DS and DE,φ

DS , % 0.0042 33.0995 20.4517 20.0142 81.3817 76.2245

σ = 0.30
DS and DE,φ

DS , % 0.0068 52.9412 48.5294 69.1176 91.1765 102.9412

σ = 0.40
DS and DE,φ

DS , % 0.0086 59.3023 89.5349 93.0233 136.0465 139.5349

volatility deviation DE,φ of Portfolio E does not exceed the benchmark Portfolio S volatility

deviation DS. Thus, when the annual market volatility σ = 0.20, all rebalancing boundary

levels φ ∈ A are admissible. As the annual market volatility level increases the set B of

admissible rebalancing boundaries reduces as follows: B = {0.005,0.01,0.015,0.02} for

σ = 0.30, and B = {0.005,0.01,0.015} for σ = 0.40 respectively.

Omega ratios and optimal rebalancing boundaries

Table 4.3, Table 4.4, and Table 4.5 present the Omega ratios of Portfolio S and Portfolio E

for the corresponding rebalancing boundary levels φ ∈ B when the annual market volatility

σ = 0.20,0.30, and 0.40, respectively.

Overall, we find that the optimal rebalancing boundary levels φ∗ for Portfolio E are φ∗ =
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Table 4.3: Omega ratios of Portfolio S and Portfolio E (φ ∈ B). The minimum acceptable
return for calculating the Omega ratio a = 0,0.01,0.02,0.03, and 0.04. Annual market
volatility σ = 0.20.

Portfolio S Portfolio E
φ ,% 0.50 1.00 1.50 2.00 2.50

a = 0.00
Omega ratio, % 104.7384 104.7496 104.7516 104.7532 104.7538 104.7561

a = 0.01
Omega ratio, % 103.3772 103.3879 103.3900 103.3913 103.3918 103.3936

a = 0.02
Omega ratio, % 102.0468 102.0570 102.0592 102.0602 102.0607 102.0619

a = 0.03
Omega ratio, % 100.7463 100.7560 100.7583 100.7589 100.7595 100.7602

a = 0.04
Omega ratio, % 99.4746 99.4838 99.4861 99.4866 99.4871 99.4871

0.025 for σ = 0.20, φ∗ = 0.020 for σ = 0.30, and φ∗ = 0.015 for σ = 0.40. This is

not surprising since a lower rebalancing boundary level allows for more frequent asset

allocation adjustment, and therefore, better risk control in volatile market condition.

Further risk-return measurements

Table 4.6, Table 4.7, and Table 4.8 present further risk-return measurement comparison

between Portfolio S and optimized Portfolio E under different market volatility conditions

σ = 0.20,0.30, and 0.40.

Table 4.6: Risk-return measurement: Portfolio S vs Optimized Portfolio E (φ∗ = 0.025)
when the annual market volatility σ = 0.20

Portfolio S Optimized Portfolio
E (φ ∗ = 0.025)

Diff. (Optimized
Portfolio E - Portfo-
lio S)

Average annual return, % 3.5515 3.5636 0.0121
Average annualized volatility, % 12.0213 12.0256 0.0043
Sharpe ratio, % 12.9065 13.0020 0.0955
90% VAR, % -11.8598 -11.8533 0.0065
95% VAR, % -20.0102 -20.0067 0.0035
99% VAR, % -24.4100 -24.4081 0.0019
Accumulated transaction cost
(per year), $ 1.5237 0.9551 -0.5686
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Table 4.4: Omega ratios of Portfolio S and Portfolio E (φ ∈ B). The minimum acceptable
return for calculating the Omega ratio a = 0,0.01,0.02,0.03, and 0.04. Annual market
volatility σ = 0.30.

Portfolio S Portfolio E
φ ,% 0.50 1.00 1.50 2.00

a = 0.00
Omega ratio, % 104.7384 104.7496 104.7516 104.7532 104.7538

a = 0.01
Omega ratio, % 103.3772 103.3879 103.3900 103.3913 103.3918

a = 0.02
Omega ratio, % 102.0468 102.0570 102.0592 102.0602 102.0607

a = 0.03
Omega ratio, % 100.7463 100.7560 100.7583 100.7589 100.7595

a = 0.04
Omega ratio, % 99.4746 99.4838 99.4861 99.4866 99.4871

Table 4.7: Risk-return measurement: Portfolio S vs Optimized Portfolio E (φ∗ = 0.02)
when the annual market volatility σ = 0.30

Portfolio S Optimized Portfolio
E (φ ∗ = 0.02)

Diff. (Optimized
Portfolio E - Portfo-
lio S)

Average annual return, % 4.0652 4.0786 0.0134
Average annualized volatility, % 12.0192 12.0195 0.0003
Sharpe ratio, % 17.1822 17.2893 0.1071
90% VAR, % -11.3435 -11.3304 0.0131
95% VAR, % -19.4925 -19.4797 0.0128
99% VAR, % -23.8916 -23.8788 0.0128
Accumulated transaction cost
(per year), $ 1.1285 0.7348 -0.3937

Table 4.8: Risk-return measurement: Portfolio S vs Optimized Portfolio E (φ∗ = 0.015)
when the annual market volatility σ = 0.40

Portfolio S Optimized Portfolio
E (φ ∗ = 0.015)

Diff. (Optimized
Portfolio E - Portfo-
lio S)

Average annual return, % 3.5515 3.5615 0.0100
Average annualized volatility, % 12.0213 12.0253 0.0040
Sharpe ratio, % 12.9065 12.9895 0.0830
90% VAR, % -11.8598 -11.8501 0.0097
95% VAR, % -20.0102 -20.0001 0.0101
99% VAR, % -24.4100 -24.0067 0.4033
Accumulated transaction cost
(per year), $ 0.9035 0.6082 -0.2953
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Table 4.5: Omega ratios of Portfolio S and Portfolio E (φ ∈ B). The minimum acceptable
return for calculating the Omega ratio a = 0,0.01,0.02,0.03, and 0.04. Annual market
volatility σ = 0.40.

Portfolio S Portfolio E
φ ,% 0.50 1.00 1.50

a = 0.00
Omega ratio, % 105.4222 105.4361 105.4385 105.4405

a = 0.01
Omega ratio, % 104.0520 104.0655 104.0677 104.0696

a = 0.02
Omega ratio, % 102.7129 102.7258 102.7279 102.7299

a = 0.03
Omega ratio, % 101.4038 101.4163 101.4182 101.4201

a = 0.04
Omega ratio, % 100.1238 100.1357 100.1375 100.1394

For all the market volatility scenarios considered, the optimized Portfolio E shows a higher

average annual return, average annualized volatility, Sharpe ratio, 90%, 95%, and 99%

VAR. When considering an initial investment of $100, in contrast with Portfolio S, the op-

timized Portfolio E with rebalancing boundaries show a significantly lower average accu-

mulated transaction cost (between $0.2953 (when σ = 0.40) and $0.5686 (when σ = 0.20)

lower, in specific) on simulated paths.

One important assumption embedded in the Black-Scholes model is that market returns are

normally distributed. However, it is widely conceived that this normality assumption is

controversial. For example, Fama (1965) reveals that stock returns conform better to the

stable Paretian distribution. Kon (1984) posits that a mixture of discrete normal distribution

is more suitable to describe daily stock returns due to their significant positive skewness.

4.6 Numerical optimization based on real market data

In this section, we demonstrate the performance of our numerical optimization algorithm

using real market data. Suppose on Dec 31st, 2010, an investor is looking to set up his/her
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Target Volatility Portfolio E based on S&P 500 as a risky asset and bond (with a constant

growing rate of r = 2%) as a risk-free asset and an initial investment of $100. The investor

would like to apply our numerical optimization algorithm.

4.6.1 Bootstrap risky asset paths simulation

Step one of our numerical optimization algorithm described in section 4.4.2 consists of sim-

ulating ”future” risky asset paths. Suppose an investor chooses the moving block bootstrap

method, or the so-called overlapping bootstrap method for the risky asset paths simulation.

Remark. This method was first proposed by Kunsch (1989) and Liu and Singh (1992). The

bootstrap method does not impose any assumptions on the distribution of market returns

(Ruiz and Pascual, 2002). In addition, comparing to other bootstrapping approaches, the

moving block bootstrap method is shown to be more reliable in preserving the characteris-

tics of stock returns such as auto-correlation, fat-tail, and positive skewness (Lahiri, 1999;

Radovanov and Marcikić, 2014; Pažickỳ et al., 2017).

On Dec 31st, 2010, an investor would like to use the moving block bootstrap method to

simulate 10,000 risky asset return paths for a 10-year future investment period. The simu-

lation requires the following steps:

1. Download daily returns of S&P 500 over a recent historical period. For our numerical

experiments we have used the time period from Dec 31st, 1980 to Dec 31st, 2010

(30-year worth of data prior to Dec 31st, 2010).

2. For each simulation, generate one risky-asset return path that includes 10 blocks of

returns. Each block contains 252 consecutive daily returns from a randomly selected

starting date in the S&P 500 time series data. This gives us a 10-year long, risky

asset return paths;
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3. Repeat the simulation 10,000 times and result in 10,000 risky asset return paths.

4.6.2 Choosing an initial optimal rebalancing boundary

On Dec 31st, 2010, an investor runs our optimization algorithms using the 10,000 bootstrap

simulated ”future” S&P 500 paths with the 10-year investment horizon (from Dec 31st,

2010 to Dec 31st, 2020).

As presented in Table 4.9, in the first stage of the algorithm, based on the constraint criteria

of the mean volatility deviation of Portfolio S and Portfolio E (DE,φ ≤ DS), the set B of

admissible rebalancing boundaries is determined. It consists of the values φ = 0.005, and

0.010. In the second stage of the algorithm, an optimal value φ∗ = 0.010 is determined

based on the Omega ratio comparison. The investor would use the optimal rebalancing

boundary φ∗ = 0.010 for Portfolio E starting from the beginning of the 10-year future

investment horizon.

Table 4.9: Mean volatility deviations and Omega ratios of Portfolio S and Portfolio E
(with φ ∈ B). Data for bootstrapping: S&P 500, Dec 31st, 1980 - Dec 31st, 2010.
r = 0.02.

Portfolio
S

Portfolio E

φ , % 0.50 1.00 1.50 2.00 2.50

Mean volatility deviations, % 1.1049 1.1012 1.1049 1.1160 1.1212 1.1312

a = 0.00
Omega ratio, % 88.1091 88.1786 88.2507

a = 0.01
Omega ratio, % 86.9476 87.0152 87.0859

a = 0.02
Omega ratio, % 85.8142 85.8799 85.9494

a = 0.03
Omega ratio, % 84.7075 84.7715 84.8398

a = 0.04
Omega ratio, % 83.6265 83.6888 83.7560
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4.6.3 Risk calibrated rebalancing boundary levels

In Section 4.6.2, we demonstrated how an initial optimal rebalancing boundary φ∗ = 0.010

has been chosen. Suppose the investor’s Portfolio E with the initial optimal rebalancing

boundary φ∗ = 0.010 runs for a certain period of time within the 10-year investment hori-

zon. Depending on the market situation, an investor may choose to recalibrate his/her

choice of the rebalancing boundary. For this study, we demonstrate how such recalbration

may be performed 5 years into the investment horizon, on Dec 31st, 2015.

We have used the actual S&P 500 path from Dec 31st, 2010 (when our hypothetical Port-

folio E has been set up) to Dec 31st, 2015 to evaluate the performance of Portfolio E (with

φ∗ = 0.010) in comparison with Portfolio S as of Dec 31st, 2015. Table 4.10 presents the

risk-return measurements for the two portfolios assuming that the investor invested $100

initially on Dec 31st, 2010.

Table 4.10: Risk-return measurement: Portfolio S vs Optimized Portfolio E (φ∗ = 0.010).
Investment horizon: Dec 31st, 2010 - Dec 31st, 2015.

Portfolio S Optimized Portfolio
E (φ ∗ = 0.010)

Diff. (Optimized
Portfolio E - Portfo-
lio S)

Average annual return, % 6.4744 6.5682 0.0938
Average annualized volatility, % 12.9133 12.9165 0.0032
Sharpe ratio, % 0.8361 0.8484 0.0123
90% VAR, % -15.3130 -15.2209 0.0922
95% VAR, % -19.3143 -19.2231 0.0912
99% VAR, % -24.0900 -23.9999 0.0901
Accumulated transaction cost
(per year), $ 1.8688 1.8476 -0.0529

Based on the risk-return measurements on real historical data, in contrast with Portfolio S,

the Optimized Portfolio E shows a $0.0529 lower accumulated transaction cost per year.

Meanwhile, the Optimized Portfolio E also has a 0.0922, 0.0912, and 0.0901% higher 90%,

95%, and 99% VAR compared to Portfolio S, suggesting that the Optimized Portfolio E can

better control portfolio downside risk than Portfolio S. With respect to other performance
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measures, the Optimized Portfolio E results in a 0.0938 higher average annual return when

comparing to its counterpart Portfolio S. In addition, we also see that the Optimized Port-

folio E shows a higher average annualized volatility. This is not surprising, since adding

the rebalancing boundary level reduces the frequency of risky and risk-free asset allocation

adjustment as an attempt to decrease transaction cost. In addition, the Optimized Portfolio

E shows a 0.0123% higher Sharpe ratio in contrast with Portfolio S, indicating that the

Optimized Portfolio E earns a higher return when looking at the same level of risk.

On Dec 31st, 2015, the investor runs our numerical optimization algorithm again using the

following input data:

• The latest 30-year worth of data of the S&P 500 data from Dec 31st, 1985 to Dec

31st, 2015;

• The future investment horizon of 5 years;

Results regarding the mean volatility deviation and Omega ratio from the rebalancing

boundary recalibration are shown in Table 4.11. In the first stage of the algorithm, the set

B of admissible rebalancing boundaries is determined. It consists of the value φ = 0.005.

Thus, from Dec 31st, 2015 forward, the investor would adjust the initially selected rebal-

ancing boundary level φ∗ = 0.010 to φ∗ = 0.005 for Portfolio E.

4.6.4 Numerical results

We have used the actual S&P 500 path from Dec 31st, 2010 (when our hypothetical Port-

folio E has been set up) through the end of the 10-year investment period (Dec 31st, 2020)

to evaluate the performance of Portfolio E. Noticed that the Portfolio E started with an

optimal rebalancing boundary φ∗ = 0.010 on Dec 31st, 2010. This rebalancing boundary

level was recalibrated to φ∗ = 0.005 on Dec 31st, 2015 based on the re-implementation of

our numerical optimization algorithm. Table 4.12 presents the risk-return measurements
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Table 4.11: Mean volatility deviations and Omega ratios of Portfolio S and Portfolio E
(with φ ∈ B). Data for bootstrapping: S&P 500, Dec 31st, 1985 - Dec 31st, 2015.
r = 0.02.

Portfolio
S

Portfolio E

φ , % 0.50 1.00 1.50 2.00 2.50

Mean volatility deviations, % 1.0700 1.0645 1.0733 1.0799 1.0845 1.0924

a = 0.00
Omega ratio, % 133.7524 133.8208

a = 0.01
Omega ratio, % 131.8694 131.9351

a = 0.02
Omega ratio, % 130.0305 130.0932

a = 0.03
Omega ratio, % 128.2359 128.2958

a = 0.04
Omega ratio, % 126.4836 126.5407

for Portfolio S and Portfolio E (with risk calibrated rebalancing boundary levels).

Table 4.12: Risk-return measurement: Portfolio S vs Optimized Portfolio E (φ∗ = 0.010
and 0.005). Investment horizon: S&P 500, Dec 31st, 2010 - Dec 31st, 2020.

Portfolio S Optimized Portfolio
E (φ ∗ = 0.010 and
0.005)

Diff. (Optimized
Portfolio E - Portfo-
lio S)

Average annual return, % 9.9003 9.9688 0.0685
Average annualized volatility, % 12.8076 12.8095 0.0019
Sharpe ratio, % 1.2680 1.2770 0.0090
90% VAR, % -11.8503 -11.7809 0.0694
95% VAR, % -15.8336 -15.7647 0.0688
99% VAR, % -20.5878 -20.5197 0.0681
Accumulated transaction cost
(per year), $ 1.5902 1.5371 -0.0531

When looking at the 10-year investment horizon (Dec 31st, 2010 to Dec 31st, 2020), with

the risk calibrated rebalancing boundary levels, the Optimized Portfolio E has a $0.0531

lower accumulated transaction cost in contrast with Portfolio S. Regarding the portfo-

lio return measurements, compared to Portfolio S, the Optimized Portfolio E results in a

0.0685% higher average annual return and a 0.0090% higher Sharpe ratio. Similar to the

results reported in Table 4.11 where the rebalancing boundary level φ∗ = 0.010 was used,
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we see that the Optimized Portfolio E has a 0.0019% higher average annualized volatility.

Nevertheless, the higher 90%, 95%, and 99% of the Optimized Portfolio E suggest that it

is more capable of controlling portfolio downside risk when comparing with Portfolio S.

In summary, we find the most suitable rebalancing boundary level by implementing our

numerical optimization algorithm on bootstrapped risky asset paths from real market data.

The optimal rebalancing boundary level, based on our analysis, may change when looking

at different investment horizons. Our risk-return measurements over two fixed investment

periods (Dec 31st, 2010 - Dec 31st, 2015 & Dec 31st, 2010 - Dec 31st, 2020) suggest that

the Optimized Portfolio E, with risk calibrated rebalancing boundary levels can reduce the

accumulated transaction cost of a target volatility portfolio and increase portfolio return.

More importantly, we also find that applying rebalancing boundary to the volatility target

asset allocation mechanism does not reduce the risk-control capability of the target volatil-

ity portfolio, which is the core of the target volatility investment concept. As shown in

Table 4.11 and Table 4.12, the Optimized Portfolio E shows a higher 90%, 95%, and 99%

VAR in contrast with Portfolio S. We also confirm this pattern by looking at five different

market scenarios (see section 4.7). This can be attributed to our optimization algorithm

design, which only considers admissible rebalancing boundary levels φ such that the mean

volatility deviation of portfolio E does not go beyond the benchmark volatility deviation

(DE,φ ≤ DS).

4.7 Analysis in different market environments

In this section, we provide a comparative analysis of performance of Portfolio E with fixed

rebalancing boundary versus the benchmark Portfolio S in different market environments

using historical market data. We follow Biedova and Steblovskaya (2020) and look at four

investment horizons that reflect different market conditions. In addition, we include the
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2020 - 2021 investment horizon which contains the most recent market drawdown due to

the COVID-19 pandemic. Illustrations of the five investment horizons are shown in Figure

4.2. For this analysis, we fix a rebalancing boundary for Portfolio E at φ = 0.010 since each

investment horizon is 2-year long only. Similar to our analysis using the bootstrap method,

we also assume that $100 was initially invested at the beginning of each investment horizon.

Figure 4.2: Investment horizons for historical analysis.

We download data from the Bloomberg database and the Federal Reserve Economic Data

database. In Table 4.12, we present the risk-return measurements for Portfolio S and Port-

folio E over the four investment horizons.

For all the five investment horizons, in contrast with the target volatility portfolio without

the rebalancing boundary (Portfolio S), the Portfolio E with φ = 0.010 shows higher aver-

age annual return, Sharpe ratio, and 90%, 95%, and 99% VAR. Regarding the transaction

cost, the Portfolio E also has a lower accumulated transaction cost (per year) compared to
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Table 4.13: Risk-return measurement: Portfolio S vs Portfolio E (φ = 0.010) on historical
market data.

Portfolio S Portfolio E
(φ = 0.010)

Diff. (Portfolio E -
Portfolio S)

2001 - 2002
Average annual return, % -14.2858 -14.2086 0.0773
Average annualized volatility, % 12.5528 12.543 0.0015
Adjusted Sharpe ratio, % -1.7933 -1.7838 0.0015
90% VAR, % -34.9720 -34.8973 0.0095
95% VAR, % -38.8593 -38.7851 0.0743
99% VAR, % -43.4990 -43.4253 0.0737
Accumulated transaction cost, $ 2.3838 2.2400 -0.1438

2007 - 2008
Average annual return, % -8.1115 -7.9162 0.1953
Average annualized volatility, % 13.0651 13.0624 -0.0027
Sharpe ratio, % -1.0598 -1.0340 0.0257
90% VAR, % -30.0538 -29.8490 0.2048
95% VAR, % -34.1041 -33.8984 0.2057
99% VAR, % -38.9383 -38.7317 0.2067
Accumulated transaction cost, $ 2.7942 2.7390 -0.1126

2008 - 2009
Average annual return, % -2.1184 -1.8917 0.2267
Average annualized volatility, % 12.2492 12.2382 -0.0109
Sharpe ratio, % -0.2595 -0.2315 0.0280
90% VAR, % -23.4604 -23.2114 0.2490
95% VAR, % -27.2690 -27.0165 0.2524
99% VAR, % -31.8147 -31.5582 0.2565
Accumulated transaction cost, $ 2.1849 2.0393 -0.1456

2013 - 2014
Average annual return, % 11.3544 11.4696 0.1152
Average annualized volatility, % 12.8835 12.8841 0.0006
Sharpe ratio, % 88.1313 89.0213 0.8900
90% VAR, % -10.3172 -10.2027 0.1145
95% VAR, % -14.3109 -14.1996 0.1143
99% VAR, % -19.0776 -18.9635 0.1141
Accumulated transaction cost, $ 3.9611 3.8671 -0.0940

2020 - 2021
Average annual return, % 15.6346 15.6929 0.0582
Average annualized volatility, % 13.8023 13.8089 0.0066
Sharpe ratio, % 2.1579 2.1670 0.0091
90% VAR, % -7.1396 -7.0930 0.0467
95% VAR, % -11.4172 -11.3726 0.0446
99% VAR, % -16.5227 -16.4805 0.0446
Accumulated transaction cost, $ 1.7481 1.7258 -0.0543
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Portfolio S.

Despite this board tendency, regarding the ability of portfolio risk control, which is the

center of the target volatility investment concept, the Optimized portfolio E performs the

best when looking at the investment horizon 2008 - 2009. Specifically, the Optimized

Portfolio E not only shows a 0.2267% higher average annual return but also a 0.0109%

lower annualized volatility in contrast with Portfolio S. Meanwhile, we also see the most

pronounced difference between Portfolio E and Portfolio S regarding the 90%, 95%, and

99% VAR. This provides evidence that adding a suitable rebalancing boundary level to

an existing volatility target asset allocation mechanism my further increase its risk control

capability when the portfolio faces a market turbulent event. Regarding the transaction

cost, this investment period shows the most significant transaction cost reduction ($0.1456)

when comparing to other investment horizons.

4.8 Conclusions and future directions

In this paper, we attempt to reduce the transaction cost of a target volatility portfolio by

including rebalancing boundaries to its volatility target asset allocation mechanism. A

constraint optimization problem is formulated to find the optimal rebalancing boundary

over a certain period of investment horizon. We implement our constraint optimization

algorithm in an artificial Black-Scholes environment as well as using bootstrap method on

real market data. From our analysis using the bootstrap method on market data, we find

that the extended target volatility portfolio with a suitable selection of rebalancing boundary

level could reduce the accumulated transaction cost and improve portfolio return.

In addition, we also showed that an investor may recalibrate the rebalancing boundary

based on changing portfolio risk and the optimal value of rebalancing boundary may vary

during an investment horizon. Following our findings, in pension practice and future work,
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we might consider applying asymmetrical, volatility-linked rebalancing boundary levels

linked to the different levels of risky asset allocation of the target volatility portfolio. This

setup allows as to further control the risky and risk-free asset rebalancing mechanism with

regard to portfolio risk and specific market conditions. In addition, one may also consider

using non-linear rebalancing boundary levels under which we apply rebalance boundaries

to the volatility target asset allocation mechanism when the risky asset allocation needs to

be increased. Under this design, the target volatility portfolio can quickly reduce its risky

asset allocation when market volatility is high and may further protect the portfolio from

overly exposing to risky asset when market volatility drops down.
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Appendix A

This appendix includes the comprehensive results for our simulation analysis when the

initial annual interest rate r(0) = 0% in Chapter 3.

Table 14: The length of the retirement coverage (in years). Initial annual interest rate
r(0) = 0%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
equities/bonds, %
30/70 29.90 29.89 29.88 29.87 29.85
40/60 29.62 29.60 29.57 29.53 29.49
50/50 29.17 29.13 29.08 29.01 28.93
60/40 28.58 28.53 28.46 28.37 38.25
70/30 29.40 29.46 29.53 29.59 29.65

Target volatility portfolio (TVP),
equities/bonds, %
30/70 30.00 30.00 30.00 30.00 30.00
40/60 30.00 30.00 30.00 30.00 30.00
50/50 29.99 29.99 29.99 30.00 30.00
60/40 29.85 29.88 29.90 29.92 29.93
70/30 29.40 29.46 29.53 29.59 29.65

Difference (TVP - BP),
equities/bonds, %
30/70 0.10 0.11 0.12 0.13 0.15
40/60 0.38 0.40 0.43 0.47 0.51
50/50 0.82 0.86 0.91 0.99 1.07
60/40 1.27 1.34 1.44 1.55 1.68
70/30 1.47 1.60 1.76 1.94 2.14
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Table 15: Portfolio survival rate, %. Initial annual interest rate r(0) = 0%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
equities/bonds, %
30/70 96.49 96.41 96.19 95.78 95.38
40/60 90.61 90.20 89.70 89.15 88.45
50/50 83.22 82.81 82.08 81.34 80.57
60/40 76.41 75.92 75.36 74.63 73.74
70/30 70.02 69.56 69.13 68.50 67.47

Target volatility portfolio (TVP),
equities/bonds, %
30/70 100.00 100.00 100.00 100.00 100.00
40/60 99.99 100.00 100.00 100.00 100.00
50/50 99.41 99.54 99.68 99.83 99.89
60/40 95.24 95.85 96.54 96.97 97.50
70/30 86.78 87.69 88.76 89.98 90.96

Difference (TVP - BP),
equities/bonds, %
30/70 3.51 3.59 3.81 4.22 4.62
40/60 9.38 9.80 10.30 10.85 11.55
50/50 16.19 16.73 17.60 18.49 19.32
60/40 18.83 19.93 21.18 22.34 23.76
70/30 16.76 18.13 19.63 21.48 23.49

Table 16: Portfolio 95% VAR (in thousand dollars). Initial annual interest rate r(0) = 0%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
equities/bonds, %
30/70 43.58 35.30 27.29 19.45 9.28
40/60 -98.27 -105.44 -114.74 -125.94 -140.69
50/50 -213.98 -226.45 -236.64 -249.94 -265.42
60/40 -319.69 -328.09 -340.64 -357.17 -374.60
70/30 -411.88 -419.46 -436.80 -456.47 -475.27

Target volatility portfolio (TVP),
equities/bonds, %
30/70 415.56 419.46 422.05 425.62 428.07
40/60 320.10 327.71 335.50 341.59 346.76
50/50 174.41 186.41 200.55 211.83 223.48
60/40 6.75 21.71 39.51 56.34 73.65
70/30 -161.54 -146.72 -128.44 -110.06 -90.39

Difference (TVP - BP),
equities/bonds, %
30/70 371.98 384.16 394.75 406.17 418.79
40/60 418.37 433.15 450.24 467.54 487.45
50/50 388.39 412.86 437.19 461.77 488.90
60/40 326.44 349.80 380.15 413.52 448.25
70/30 250.34 272.74 308.36 346.41 384.88
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Table 17: Portfolio 95% CVAR (in thousand dollars). Initial annual interest rate
r(0) = 0%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
equities/bonds, %
30/70 -53.43 -59.11 -67.04 -77.72 -90.62
40/60 -200.82 -208.05 -218.26 -231.67 -248.00
50/50 -329.46 -338.63 -351.57 -368.10 -387.87
60/40 -448.37 -459.96 -475.51 -494.70 -518.15
70/30 -567.32 -580.90 -599.68 -623.59 -651.30

Target volatility portfolio (TVP),
equities/bonds, %
30/7 363.11 366.93 370.35 373.53 376.49
40/60 252.64 261.09 269.47 277.48 285.06
50/50 93.05 105.83 119.83 133.03 145.96
60/40 -87.76 -71.60 -53.25 -34.76 -16.97
70/30 -270.59 -252.26 -230.31 -207.56 -185.34

Difference (TVP - BP),
equities/bonds, %
30/70 416.54 426.05 437.39 451.25 467.11
40/60 453.46 469.14 187.73 509.15 533.06
50/50 422.52 444.45 471.10 501.13 533.83
60/40 360.61 388.36 422.27 459.94 501.18
70/30 296.73 328.64 369.37 416.03 465.97

Table 18: Average annualized return, %. Initial annual interest rate r(0) = 0%

σ(0),% 10 15 20 25 30

Benchmark portfolio (BP),
equities/bonds, %
30/70 4.329 4.329 4.329 4.330 4.330
40/60 4.346 4.347 4.347 4.348 4.348
50/50 4.365 4.365 4.366 4.367 4.367
60/40 4.384 4.386 4.387 4.387 4.388
70/30 4.405 4.407 4.408 4.409 4.410

Target volatility portfolio (TVP),
equities/bonds, %
30/70 4.269 4.274 4.277 4.279 4.281
40/60 4.269 4.275 4.279 4.281 4.283
50/50 4.277 4.280 4.284 4.287 4.289
60/40 4.296 4.291 4.294 4.297 4.299
70/30 4.332 4.312 4.310 4.312 4.314

Difference (TVP - BP),
equities/bonds, %
30/70 -0.06 -0.055 -0.052 -0.050 -0.049
40/60 -0.077 -0.072 -0.068 -0.066 -0.065
50/50 -0.088 -0.086 -0.082 -0.080 -0.078
60/40 -0.089 -0.095 -0.092 -0.090 -0.089
70/30 -0.073 -0.095 -0.098 -0.097 -0.096
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